

Stalker Documentation

[image: Travis-CI Build Status] [https://travis-ci.org/eoyilmaz/stalker] [image: License] [http://www.gnu.org/licenses/lgpl-3.0] [image: Supported Python versions] [https://pypi.python.org/pypi/stalker] [image: PyPI Version] [https://pypi.python.org/pypi/stalker] [image: Wheel Support] [https://pypi.python.org/pypi/stalker]

About

Stalker is an Open Source Production Asset Management (ProdAM) Library designed
specifically for Animation and VFX Studios but can be used for any kind of
projects. Stalker is licensed under LGPL v3.

Features

Stalker has the following features:

	Designed for Animation and VFX Studios.

	Platform independent.

	Default installation handles nearly all the asset and project management
needs of an animation and vfx studio.

	Customizable with configuration scripts.

	Customizable object model (Stalker Object Model - SOM).

	Uses TaskJuggler as the project planing and tracking backend.

	Mainly developed for PostgreSQL in mind but SQLite3 is also
supported.

	Can be connected to all the major 3D animation packages like Maya,
Houdini, Nuke, Fusion, Softimage, Blender etc. and any application that
has a Python API. And with applications like Adobe Photoshop which does
not have a direct Python API but supports win32com or comtypes.

	Mainly developed for Python 3.0+ and Python 2.7 is fully supported.

	Developed with TDD practices.

Stalker is build over these other OpenSource projects:

	Python

	SQLAlchemy and Alembic

	Jinja2

	TaskJuggler

Stalker as a library has no graphical UI, it is a python library that gives you
the ability to build your pipeline on top of it. There are other python
packages like the Open Source Pyramid Web Application Stalker Pyramid [https://github.com/eoyilmaz/stalker_pyramid] and
the Open Source pipeline library Anima [https://github.com/eoyilmaz/anima] which has PyQt/PySide/PySide2 UIs for
applications like Maya, Nuke, Houdini, Fusion, Photoshop etc.

Installation

Use:

pip install stalker

Examples

Let’s play with Stalker.

Initialize the database and fill with some default data:

from stalker import db
db.setup()
db.init()

Create a User:

from stalker.db.session import DBSession
from stalker import User
me = User(
 name='Erkan Ozgur Yilmaz',
 login='erkanozgur',
 email='my_email@gmail.com',
 password='secretpass'
)

Save the user to database
DBSession.save(me)

Create a Repository for project files to be saved under:

from stalker import Repository
repo = Repository(
 name='Commercial Projects Repository',
 windows_path='Z:/Projects',
 linux_path='/mnt/Z/Projects',
 osx_path='/Volumes/Z/Projects'
)

Create a FilenameTemplate (to be used as file naming convention):

from stalker import FilenameTemplate

task_template = FilenameTemplate(
 name='Standard Task Filename Template',
 target_entity_type='Task', # This is for files saved for Tasks
 path='{{project.repository.path}}/{{project.code}}/'
 '{%- for parent_task in parent_tasks -%}'
 '{{parent_task.nice_name}}/'
 '{%- endfor -%}', # This is Jinja2 template code
 filename='{{version.nice_name}}_v{{"%03d"|format(version.version_number)}}'
)

Create a Structure that uses this template:

from stalker import Structure
standard_folder_structure = Structure(
 name='Standard Project Folder Structure',
 templates=[task_template],
 custom_template='{{project.code}}/References' # If you need extra folders
)

Now create a Project that uses this structure and will be placed under the
repository:

from stalker import Project
new_project = Project(
 name='Test Project',
 code='TP',
 structure=standard_folder_structure,
 repositories=[repo], # if you have more than one repository you can do it
)

Define the project resolution:

from stalker import ImageFormat
hd1080 = ImageFormat(
 name='1080p',
 width=1920,
 height=1080
)

Set the project resolution:

new_project.image_format = hd1080

Save the project and all the other data it is connected to it
DBSession.save(new_project)

Create Assets, Shots and other Tasks:

from stalker import Task, Asset, Shot, Type

define Character asset type
char_type = Type(name='Character', code='CHAR', target_entity_type='Asset')

character1 = Asset(
 name='Character 1',
 code='CHAR1',
 type=char_type,
 project=new_project
)

Save the Asset
DBSession.save(character1)

model = Task(
 name='Model',
 parent=character1
)

rigging = Task(
 name='Rig',
 parent=character1,
 depends=[model], # For project management, define that Rig can not start
 # before Model ends.
)

Save the new tasks
DBSession.save([model, rigging])

A shot and some tasks for it
shot = Shot(
 name='SH001',
 code='SH001',
 project=new_project
)

Save the Shot
DBSession.save(shot)

animation = Task(
 name='Animation',
 parent=shot,
)

lighting = Task(
 name='Lighting',
 parent=shot,
 depends=[animation], # Lighting can not start before Animation ends,
 schedule_timing=1,
 schedule_unit='d', # The task expected to take 1 day to complete
 resources=[me]
)
DBSession.save([animation, lighting])

Let’s create versions for the Animation task.

from stalker import Version

new_version = Version(task=animation)
new_version.update_paths() # to render the naming convention template
new_version.extension = '.ma' # let's say that we have created under Maya

Let’s check how the version path is rendered:

assert new_version.absolute_full_path == \
 "Z:/Projects/TP/SH001/Animation/SH001_Animation_Main_v001.ma"
assert new_version.version_number == 1

Create a new version and check that the version number increased automatically:

new_version2 = Version(task=animation)
new_version2.update_paths() # to render the naming convention template
new_version2.extension = '.ma' # let's say that we have created under Maya

assert new_version2.version_number == 2

See more detailed example in API Tutorial [https://pythonhosted.org/stalker/tutorial.html].

Table of Contents

	About
	Features

	Installation

	Examples

	Installation
	How to Install Stalker

	Install Python

	Install Stalker
	Installing setuptools with ez_setup:

	Installing Stalker (All OSes):

	Checking the installation of Stalker

	For developers

	Installing a Database

	API Tutorial
	Introduction

	Part I - Basics

	Part II/A - Creating Simple Data

	Part II/B - Querying, Updating and Deleting Data

	Part III - Pipeline

	Part IV - Task & Resource Management

	Part V - Scheduling

	Part VI - Asset Management

	Part VII - Collaboration (not completed)

	Part VIII - Extending SOM (coming)

	Conclusion

	Design
	Introduction

	Concepts
	Stalker Object Model (SOM)

	Inheritance Diagram
	Features

	How To Customize Stalker

	How To Extend SOM

	Creating Data
	Creating a Project

	Create a Task

	Configuring Stalker
	config.py File

	Config Variables

	Upgrading Database
	Introduction

	Instructions

	How To Contribute
	Development Style

	Testing

	Coding Style

	SCM - Git

	Adding Changes

	Stalker Development Roadmap
	Roadmap Based on Versions
	0.1.0:

	0.2.0:

	0.3.0:

	Stalker Changes
	0.2.24

	0.2.23

	0.2.22

	0.2.21

	0.2.20

	0.2.19

	0.2.18

	0.2.17.6

	0.2.17.5

	0.2.17.4

	0.2.17.3

	0.2.17.2

	0.2.17.1

	0.2.17

	0.2.16.4

	0.2.16.3

	0.2.16.2

	0.2.16.1

	0.2.16

	0.2.15.2

	0.2.15.1

	0.2.15

	0.2.14

	0.2.13.3

	0.2.13.2

	0.2.13.1

	0.2.13

	0.2.12.1

	0.2.12

	0.2.11

	0.2.10.5

	0.2.10.4

	0.2.10.3

	0.2.10.2

	0.2.10.1

	0.2.10

	0.2.9.2

	0.2.9.1

	0.2.9

	0.2.8.4

	0.2.8.3

	0.2.8.2

	0.2.8.1.1

	0.2.8.1

	0.2.8

	0.2.7.6

	0.2.7.5

	0.2.7.4

	0.2.7.3

	0.2.7.2

	0.2.7.1

	0.2.7

	0.2.6.14

	0.2.6.13

	0.2.6.12

	0.2.6.11

	0.2.6.10

	0.2.6.9

	0.2.6.8

	0.2.6.7

	0.2.6.6

	0.2.6.5

	0.2.6.4

	0.2.6.3

	0.2.6.2

	0.2.6.1

	0.2.6

	0.2.5.5

	0.2.5.4

	0.2.5.3

	0.2.5.2

	0.2.5.1

	0.2.5

	0.2.4

	0.2.3.5

	0.2.3.4

	0.2.3.3

	0.2.3.2

	0.2.3.1

	0.2.3

	0.2.2.3

	0.2.2.2

	0.2.2.1

	0.2.2

	0.2.1.2

	0.2.1.1

	0.2.1

	0.2.0

	0.2.0.rc5

	0.2.0.rc4

	0.2.0.rc3

	0.2.0.rc2

	0.2.0.rc1

	0.2.0.b9

	0.2.0.b8

	0.2.0.b7

	0.2.0.b6

	0.2.0.b5

	0.2.0.b4

	0.2.0.b3

	0.2.0.b2

	0.2.0.b1

	0.2.0.a10

	0.2.0.a9

	0.2.0.a8

	0.2.0.a7

	0.2.0.a6

	0.2.0.a5

	0.2.0.a4

	0.2.0.a3

	0.2.0.a2

	0.2.0.a1

Summary

	stalker.db

	Database module of Stalker.

	stalker.db.setup

	Utility function that helps to connect the system to the given database.

	stalker.exceptions

	Errors for the system.

	stalker.exceptions.CircularDependencyError

	Raised when there is circular dependencies within Tasks

	stalker.exceptions.DBError

	

	stalker.exceptions.LoginError

	Raised when the login information is not correct or not correlate with the data in the database.

	stalker.exceptions.OverBookedError

	Raised when a resource is booked more than once for the same time period

	stalker.exceptions.StatusError

	Raised when the status of an entity is not suitable for the desired action

	stalker.models

	

	stalker.models.asset.Asset

	The Asset class is the whole idea behind Stalker.

	stalker.models.auth.AuthenticationLog

	Keeps track of login/logout dates and the action (login or logout).

	stalker.models.auth.Group

	Creates groups for users to be used in authorization system.

	stalker.models.auth.LocalSession

	A simple temporary session object which simple stores session data.

	stalker.models.auth.Role

	Defines a User role.

	stalker.models.auth.Permission

	A class to hold permissions.

	stalker.models.auth.User

	The user class is designed to hold data about a User in the system.

	stalker.models.budget.Budget

	Manages project budgets

	stalker.models.budget.BudgetEntry

	Manages entries in a Budget.

	stalker.models.budget.Good

	Manages commercial items that is served by the Studio.

	stalker.models.budget.Invoice

	Holds information about invoices

	stalker.models.budget.Payment

	Holds information about the payments.

	stalker.models.budget.PriceList

	Contains CommercialItems to create a list of items that is sold by the Studio.

	stalker.models.department.Department

	The departments that forms the studio itself.

	stalker.models.department.DepartmentUser

	The association object used in Department-to-User relation

	stalker.models.client.Client

	The Client (e.g.

	stalker.models.client.ClientUser

	The association object used in Client-to-User relation

	stalker.models.entity.Entity

	Another base data class that adds tags and notes to the attributes list.

	stalker.models.entity.EntityGroup

	Groups a wide variety of objects together to let one easily reach them.

	stalker.models.entity.SimpleEntity

	The base class of all the others

	stalker.models.format.ImageFormat

	Common image formats for the Projects.

	stalker.models.link.Link

	Holds data about external links.

	stalker.models.message.Message

	The base of the messaging system in Stalker

	stalker.models.mixins.ACLMixin

	A Mixin for adding ACLs to mixed in class.

	stalker.models.mixins.CodeMixin

	Adds code info to the mixed in class.

	stalker.models.mixins.DateRangeMixin

	Adds date range info to the mixed in class.

	stalker.models.mixins.ProjectMixin

	Allows connecting a Project to the mixed in object.

	stalker.models.mixins.ReferenceMixin

	Adds reference capabilities to the mixed in class.

	stalker.models.mixins.ScheduleMixin

	Adds schedule info to the mixed in class.

	stalker.models.mixins.StatusMixin

	Makes the mixed in object statusable.

	stalker.models.mixins.TargetEntityTypeMixin

	Adds target_entity_type attribute to mixed in class.

	stalker.models.mixins.WorkingHoursMixin

	Sets working hours for the mixed in class.

	stalker.models.note.Note

	Notes for any of the SOM objects.

	stalker.models.project.Project

	All the information about a Project in Stalker is hold in this class.

	stalker.models.project.ProjectClient

	The association object used in Client-to-Project relation

	stalker.models.project.ProjectRepository

	The association object for Project to Repository instances

	stalker.models.project.ProjectUser

	The association object used in User-to-Project relation

	stalker.models.repository.Repository

	Manages fileserver/repository related data.

	stalker.models.review.Review

	Manages the Task Review Workflow.

	stalker.models.review.Daily

	Manages data related to Dailies.

	stalker.models.review.DailyLink

	The association object used in Daily-to-Link relation

	stalker.models.scene.Scene

	Stores data about Scenes.

	stalker.models.schedulers.SchedulerBase

	This is the base class for schedulers.

	stalker.models.schedulers.TaskJugglerScheduler

	This is the main scheduler for Stalker right now.

	stalker.models.sequence.Sequence

	Stores data about Sequences.

	stalker.models.shot.Shot

	Manages Shot related data.

	stalker.models.status.Status

	Defines object statutes.

	stalker.models.status.StatusList

	Type specific list of Status instances.

	stalker.models.structure.Structure

	Defines folder structures for Projects.

	stalker.models.studio.Studio

	Manage all the studio information at once.

	stalker.models.studio.WorkingHours

	A helper class to manage Studio working hours.

	stalker.models.tag.Tag

	Use it to create tags for any object available in SOM.

	stalker.models.task.Task

	Manages Task related data.

	stalker.models.task.TaskDependency

	The association object used in Task-to-Task dependency relation

	stalker.models.task.TimeLog

	Holds information about the uninterrupted time spent on a specific Task by a specific User.

	stalker.models.template.FilenameTemplate

	Holds templates for filename and path conventions.

	stalker.models.ticket.Ticket

	Tickets are the way of reporting errors or asking for changes.

	stalker.models.ticket.TicketLog

	Holds Ticket.Ticket.status change operations.

	stalker.models.type.EntityType

	A simple class just to hold the registered class names in Stalker

	stalker.models.type.Type

	Everything can have a type.

	stalker.models.version.Version

	Holds information about the created versions (files) for a class:.Task

	stalker.models.wiki.Page

	A simple Wiki page implementation.

Indices and tables

	Index

	Module Index

	Search Page

 [image: Travis-CI Build Status] [https://travis-ci.org/eoyilmaz/stalker] [image: License] [http://www.gnu.org/licenses/lgpl-3.0] [image: Supported Python versions] [https://pypi.python.org/pypi/stalker] [image: PyPI Version] [https://pypi.python.org/pypi/stalker] [image: Wheel Support] [https://pypi.python.org/pypi/stalker]

About

Stalker is an Open Source Production Asset Management (ProdAM) Library designed
specifically for Animation and VFX Studios but can be used for any kind of
projects. Stalker is licensed under LGPL v3.

Features

Stalker has the following features:

	Designed for Animation and VFX Studios.

	Platform independent.

	Default installation handles nearly all the asset and project management
needs of an animation and vfx studio.

	Customizable with configuration scripts.

	Customizable object model (Stalker Object Model - SOM).

	Uses TaskJuggler as the project planing and tracking backend.

	Mainly developed for PostgreSQL in mind but SQLite3 is also
supported.

	Can be connected to all the major 3D animation packages like Maya,
Houdini, Nuke, Fusion, Softimage, Blender etc. and any application that
has a Python API. And with applications like Adobe Photoshop which does
not have a direct Python API but supports win32com or comtypes.

	Mainly developed for Python 3.0+ and Python 2.7 is fully supported.

	Developed with TDD practices.

Stalker is build over these other OpenSource projects:

	Python

	SQLAlchemy and Alembic

	Jinja2

	TaskJuggler

Stalker as a library has no graphical UI, it is a python library that gives you
the ability to build your pipeline on top of it. There are other python
packages like the Open Source Pyramid Web Application Stalker Pyramid [https://github.com/eoyilmaz/stalker_pyramid] and
the Open Source pipeline library Anima [https://github.com/eoyilmaz/anima] which has PyQt/PySide/PySide2 UIs for
applications like Maya, Nuke, Houdini, Fusion, Photoshop etc.

Installation

Use:

pip install stalker

Examples

Let’s play with Stalker.

Initialize the database and fill with some default data:

from stalker import db
db.setup()
db.init()

Create a User:

from stalker.db.session import DBSession
from stalker import User
me = User(
 name='Erkan Ozgur Yilmaz',
 login='erkanozgur',
 email='my_email@gmail.com',
 password='secretpass'
)

Save the user to database
DBSession.save(me)

Create a Repository for project files to be saved under:

from stalker import Repository
repo = Repository(
 name='Commercial Projects Repository',
 windows_path='Z:/Projects',
 linux_path='/mnt/Z/Projects',
 osx_path='/Volumes/Z/Projects'
)

Create a FilenameTemplate (to be used as file naming convention):

from stalker import FilenameTemplate

task_template = FilenameTemplate(
 name='Standard Task Filename Template',
 target_entity_type='Task', # This is for files saved for Tasks
 path='{{project.repository.path}}/{{project.code}}/'
 '{%- for parent_task in parent_tasks -%}'
 '{{parent_task.nice_name}}/'
 '{%- endfor -%}', # This is Jinja2 template code
 filename='{{version.nice_name}}_v{{"%03d"|format(version.version_number)}}'
)

Create a Structure that uses this template:

from stalker import Structure
standard_folder_structure = Structure(
 name='Standard Project Folder Structure',
 templates=[task_template],
 custom_template='{{project.code}}/References' # If you need extra folders
)

Now create a Project that uses this structure and will be placed under the
repository:

from stalker import Project
new_project = Project(
 name='Test Project',
 code='TP',
 structure=standard_folder_structure,
 repositories=[repo], # if you have more than one repository you can do it
)

Define the project resolution:

from stalker import ImageFormat
hd1080 = ImageFormat(
 name='1080p',
 width=1920,
 height=1080
)

Set the project resolution:

new_project.image_format = hd1080

Save the project and all the other data it is connected to it
DBSession.save(new_project)

Create Assets, Shots and other Tasks:

from stalker import Task, Asset, Shot, Type

define Character asset type
char_type = Type(name='Character', code='CHAR', target_entity_type='Asset')

character1 = Asset(
 name='Character 1',
 code='CHAR1',
 type=char_type,
 project=new_project
)

Save the Asset
DBSession.save(character1)

model = Task(
 name='Model',
 parent=character1
)

rigging = Task(
 name='Rig',
 parent=character1,
 depends=[model], # For project management, define that Rig can not start
 # before Model ends.
)

Save the new tasks
DBSession.save([model, rigging])

A shot and some tasks for it
shot = Shot(
 name='SH001',
 code='SH001',
 project=new_project
)

Save the Shot
DBSession.save(shot)

animation = Task(
 name='Animation',
 parent=shot,
)

lighting = Task(
 name='Lighting',
 parent=shot,
 depends=[animation], # Lighting can not start before Animation ends,
 schedule_timing=1,
 schedule_unit='d', # The task expected to take 1 day to complete
 resources=[me]
)
DBSession.save([animation, lighting])

Let’s create versions for the Animation task.

from stalker import Version

new_version = Version(task=animation)
new_version.update_paths() # to render the naming convention template
new_version.extension = '.ma' # let's say that we have created under Maya

Let’s check how the version path is rendered:

assert new_version.absolute_full_path == \
 "Z:/Projects/TP/SH001/Animation/SH001_Animation_Main_v001.ma"
assert new_version.version_number == 1

Create a new version and check that the version number increased automatically:

new_version2 = Version(task=animation)
new_version2.update_paths() # to render the naming convention template
new_version2.extension = '.ma' # let's say that we have created under Maya

assert new_version2.version_number == 2

See more detailed example in API Tutorial [https://pythonhosted.org/stalker/tutorial.html].

Installation

How to Install Stalker

This document will help you install and run Stalker.

Install Python

Stalker is completely written with Python, so it requires Python. It currently
works with Python version 2.6 and 2.7. So you first need to have Python
installed in your system. On Linux and OSX there is a system wide Python
already installed. For Windows, you need to download the Python installer
suitable for your Windows operating system (32 or 64 bit) from Python.org [http://www.python.org/]

Install Stalker

The easiest way to install the latest version of Stalker along with all its
dependencies is to use the setuptools. If your system doesn’t have setuptools
(particularly Windows) you need to install setuptools by using ez_setup
bootstrap script.

Installing setuptools with ez_setup:

These steps are generally needed just for Windows. Linux and OSX users can skip
this part.

	download ez_setup.py [http://peak.telecommunity.com/dist/ez_setup.py]

	run the following command in the command prompt/shell/terminal:

python ez_setup

It will install or build the setuptools if there are no suitable installer
for your operating system.

Installing Stalker (All OSes):

After installing the setuptools you can run the following command:

easy_install -U stalker

Now you have installed Stalker along with all its dependencies.

Checking the installation of Stalker

If everything went ok you should be able to import and check the version of
Stalker by using the Python prompt like this:

>>> import stalker
>>> stalker.__version__
0.2.21

For developers

It is highly recommended to create a VirtualEnv specific for Stalker
development. So to setup a virtualenv for Stalker:

virtualenv --no-site-packages stalker

Then clone the repository (you need git to do that):

cd stalker
git clone https://github.com/eoyilmaz/stalker.git stalker

And then to setup the virtual environment for development:

cd stalker
../bin/python setup.py develop

This command should install any dependent package to the virtual environment.

Installing a Database

Stalker uses a database to store all the data. The only database backend that
doesn’t require any extra installation is SQLite3. You can setup Stalker to run
with an SQLite3 database. But it is much suitable to have a dedicated database
server in your studio. And it is recommended to use the same kind of database
backend both in development and production to reduce any compatibility problems
and any migration headaches.

Although Stalker is mainly tested and developed on SQLite3, the developers of
Stalker are using it in a studio environment where the main database is
PosgreSQL, and it is the recommended database for any application based on
Stalker. But, testing and using Stalker in any other database is encouraged.

See the SQLAlchemy documentation [http://www.sqlalchemy.org/docs/core/engines.html#supported-dbapis] for supported databases.

API Tutorial

Introduction

Using Stalker along with Python is all about interacting with a database by
using the Stalker Object Model (SOM). Stalker uses the powerful SQLAlchemy
ORM [http://www.sqlalchemy.org/docs/orm/tutorial.html].

This tutorial section let you familiarise with the Stalker Python API and
Stalker Object Model (SOM). If you used SQLAlchemy before you will feel at
home and if you aren’t you will see that it is fun dealing with databases with
SOM.

Part I - Basics

Lets say that we just installed Stalker (as you are right now) and want to use
Stalker in our first project.

The first thing we are going to learn about is how to connect to the database
so we can enter information about our studio and the projects.

We are going to use a helper script to connect to the default database. Use the
following command to connect to the database:

from stalker import db
db.setup({"sqlalchemy.url": "sqlite:///"})

This will create an in-memory SQLite3 database, which is useless other than
testing purposes. To be able to get more out of Stalker we should give a proper
database information. The most basic setup is to use a file based SQLite3
database:

db.setup({"sqlalchemy.url": "sqlite:///C:/studio.db"}) # assumed Windows

or:

db.setup({"sqlalchemy.url": "sqlite:////home/ozgur/studio.db"}) # under linux or osx

Note

Although with Stalker v0.2.18 the SQLite3 support is dropped, Stalker can
still work with an SQLite3 database. But the suggested database backend is
PostgreSQL (preferably PostgreSQL 9.5).

Then if this is the first time you are connecting to the database, then you
should initialize the database to create some default data:

db.init()

This will create some very important default data required for Stalker to work
properly. Although it will not break anything to call db.init() multiple
times it is needed only once (so you don’t need to call it again when you close
your python shell and open up a new and fresh one).

Lets continue by creating a Studio for our self:

from stalker import Studio
my_studio = Studio(
 name='My Great Studio'
)

For now don’t care what a Studio is about. It will be explained later on this
tutorial.

Lets continue by creating a User for ourselves in the database. The first
thing we need to do is to import the User class in to the current
namespace:

from stalker import User

then create the User object:

me = User(
 name="Erkan Ozgur Yilmaz",
 login="eoyilmaz",
 email="some_email_address@gmail.com",
 password="secret",
 description="This is me"
)

Now we have just created a user which represents us.

Lets create a new Department to define your department:

from stalker import Department
tds_department = Department(
 name="TDs",
 description="This is the TDs department"
)

Now add your user to the department:

tds_department.users.append(me)

or we can do it by using the User instance:

me.departments.append(tds_department)

Even if you didn’t do the latter, when you run:

print(me.departments)
you should get something like
[<TDs (Department)>]

We have successfully created a User and a Department and we
assigned the user as one of the member of the TDs Department.

Because we didn’t tell Stalker to commit the changes, no data has been saved to
the database yet. So lets send it the data to the database:

from stalker.db.session import DBSession
DBSession.add(my_studio)
DBSession.add(me)
DBSession.add(tds_department)
DBSession.commit()

As you see we have used the DBSession object to send (commit) the data to
the database. These information are stored in the database right now.

Lets try to get something back from the database by querying all the
departments, then getting the second one (the first department is always the
“admins” which is created by default) and getting its first members name:

all_departments = Department.query.all()
print(all_departments)
This should print something like
[<admins (Department)>, <TDs (Department)>]
"admins" department is created by default

admins = all_departments[0]
tds = all_departments[1]

all_users = tds.users # Department.users is a synonym for Department.members
 # they are essentially the same attribute
print(all_users[0])
this should print
<Erkan Ozgur Yilmaz ('eoyilmaz') (User)>

Part II/A - Creating Simple Data

Lets say that we have this new commercial project coming and you want to start
using Stalker with it. So we need to create a Project object to hold
data about it.

A project instance needs to have a suitable StatusList (see
Statuses and Status Lists) and a Repository instance:

we will reuse the Statuses created by default (in db.init())
from stalker import Status

status_new = Status.query.filter_by(code='NEW').first()
status_wip = Status.query.filter_by(code='WIP').first()
status_cmpl = Status.query.filter_by(code='CMPL').first()

Note

When the Stalker database is first initialized (with db.init()) a set of
Statuses for Tasks, Assets,
Shots, Sequences and Tickets are created
along with a StatusList for each of the data types. Up to this
point in the tutorial we have used those Statuses (new, wip and cmpl)
that are created by default.

For now we have just created generic statuses. These Status instances
can be used with any kind of statusable objects. The idea behind is to
define the statuses only once, and use them in mixtures suitable for different
type of objects. So you can define all the possible Statuses for your entities,
then you can create a list of them for specific type of objects.

Lets create a StatusList suitable for Project instances:

a status list which is suitable for Project instances
from stalker import StatusList, Project

project_statuses = StatusList(
 name="Project Status List",
 statuses=[
 status_new,
 status_wip,
 status_cmpl
],
 target_entity_type='Project' # you can also use Project which is the
 # class itself
)

So we defined a status list which is suitable for Project instances.
As you see we didn’t used all the generic Statuses in our project_statuses
because for a Project object we thought that these statuses are enough.

And finally, the Repository. The Repository (or Repo if you like) is
a path in our file server, where we place files and which is visible to all the
workstations/render farmers:

from stalker import Repository

and the repository itself
commercial_repo = Repository(
 name="Commercial Repository",
 code="CR"
)

New in version 0.2.24: Starting with Stalker version 0.2.24 Repository instances have
stalker.models.repository.Repository.code attribute to help
generating universal paths (both across OSes and different installations of
Stalker).

Repository class will be explained in detail in upcoming sections.

So:

new_project = Project(
 name="Fancy Commercial",
 code='FC',
 status_list=project_statuses,
 repositories=[commercial_repo],
)

So we have created our project now.

Lets enter more information about this new project:

import tzlocal
import datetime
from stalker import ImageFormat

new_project.description = \
"""The commercial is about this fancy product. The
client want us to have a shiny look with their
product bla bla bla..."""

new_project.image_format = ImageFormat(
 name="HD 1080",
 width=1920,
 height=1080
)

new_project.fps = 25
local_tz = tzlocal.get_localzone()
new_project.end = datetime.datetime(2014, 5, 15, tzinfo=local_tz)
new_project.users.append(me)

Lets save all the new data to the database:

DBSession.add(new_project)
DBSession.commit()

As you see, even though we have created multiple objects (new_project,
statuses, status lists etc.) we’ve just added the new_project object to the
database, but don’t worry all the related objects will be added to the
database.

Note

Starting with Stalker v0.2.18 all the datetime information needs to have
timezone information (we’ve used the local timezone in the example).

A Project generally is group of Tasks that needs to be completed. A
Task in Stalker is a type of entity where we define the total amount
of effort need to be done (or the duration or the length of the task, see
Task class documentation) to consider that Task as completed. All of
the tasks (leaf tasks in fact, coming next) has resources which defines the
Users who need to work on that task and complete it. These are all
explained in Task class documentation.

For now you just need to now that Assets, Shots and
Sequences in Stalker are derived from Task and they are
in fact other type of Tasks or a specialized version of Tasks.

So lets create a Sequence:

from stalker import Sequence

seq1 = Sequence(
 name="Sequence 1",
 code="SEQ1",
 project=new_project,
)

And a Sequence generally has Shots:

from stalker import Shot

sh001 = Shot(
 name='SH001',
 code='SH001',
 project=new_project,
 sequences=[seq1]
)
sh002 = Shot(
 code='SH002',
 project=new_project,
 sequences=[seq1]
)
sh003 = Shot(
 code='SH003',
 project=new_project,
 sequences=[seq1]
)

send them to the database:

DBsession.add_all([sh001, sh002, sh003])
DBsession.commit()

Note

Even though, in this tutorial we have created Shots with one
Sequence instance, it is not needed. You can create
Shots without any Sequence instance needed.

For small projects like commercials, you may skip creating a Sequence at
all.

For bigger projects, like feature films, it is a very good idea to use
Sequences and then group the Shots under them.

But again, a Shot can be connected to multiple sequences, which is useful if
your shot, let say, is a kind of flashback and you will use this shot again
without changing it at all, then this feature becomes handy.

Part II/B - Querying, Updating and Deleting Data

So far we just created some simple data. What about updating them. Let say that
we created a new shot with wrong info:

sh004 = Shot(
 code='SH004',
 project=new_project,
 sequences=[seq1]
)
DBSession.add(sh004)
DBSession.commit()

and you figured out that you have created and committed a wrong info and you
want to correct it:

sh004.code = "SH005"
DBsession.commit()

later on lets say you wanted to get the shot back from database:

first find the data
wrong_shot = Shot.query.filter_by(code="SH005").first()

now update it
wrong_shot.code = "SH004"

commit the changes to the database
DBsession.commit()

and let say that you decided to delete the data:

DBsession.delete(wrong_shot)
DBsession.commit()

If you don’t close your python session, your variable are still going to
contain the data but they do not exist in the database anymore:

wrong_shot = Shot.query.filter_by(code="SH005").first()
print(wrong_shot)
should print None

for more info about update and delete options (like cascades) in SQLAlchemy
please see the SQLAlchemy documentation [http://www.sqlalchemy.org/docs/orm/session.html].

Part III - Pipeline

Up until now, we skipped a lot of stuff here to take little steps every time.
Even tough we have created users, departments, projects, sequences and shots,
Stalker still doesn’t know much about our studio. For example, it doesn’t have
any information about the pipeline that we are following and what steps we
do to complete those shots, thus to complete the project.

In Stalker, pipeline is managed by Tasks. So
you create Tasks for Shots and then you can create dependencies between tasks.

So lets create a couple of tasks for one of the shots we have created before:

from stalker import Task

previs = Task(
 name="Previs",
 parent=sh001
)

matchmove = Task(
 name="Matchmove",
 parent=sh001
)

anim = Task(
 name="Animation",
 parent=sh001
)

lighting = Task(
 name="Lighting",
 parent=sh001
)

comp = Task(
 name="comp",
 parent=sh001
)

Now create the dependencies between them:

comp.depends = [lighting]
lighting.depends = [anim]
anim.depends = [previs, matchmove]

Stalker uses this dependency relation in scheduling these tasks. That is by
appending “lighting” task as one of the dependencies of comp, Stalker now know
that lighting should be completed to let the resource of the comp task start
working. The “Task Scheduling” will be explained in detail later on in this
tutorial.

Part IV - Task & Resource Management

Now we have a couple of Shots with couple of tasks inside it but we didn’t
assign the tasks to anybody to let them complete this job.

Lets assign all this stuff to our self (for now :)):

previs.resources = [me]
previs.schedule_timing = 10
previs.schedule_unit = 'd'

matchmove.resources = [me]
matchmove.schedule_timing = 2
matchmove.schedule_unit = 'd'

anim.resources = [me]
anim.schedule_timing = 5
anim.schedule_unit = 'd'

lighting.resources = [me]
lighting.schedule_timing = 3
lighting.schedule_unit = 'd'

comp.resources = [me]
comp.schedule_timing = 6
comp.schedule_unit = 'h'

Now Stalker knows the hierarchy of the tasks and how much effort is needed to
complete this tasks. Stalker will use this information to solve the Scheduling
problem, and will tell you when to start and complete this tasks.

Lets commit the changes again:

DBsession.commit()

If you noticed, this time we didn’t add anything to the session, cause we have
added the sh001 in a previous commit, and because all the objects are
attached to this shot object in some way, all the changes has been tracked and
added to the database.

Part V - Scheduling

In previous sections of this tutorial we have created a Shot and then
created a couple of Tasks to this shot and then assigned our self
as the resource of these tasks.

Stalker knows enough about our little project now, but we don’t know where to
start the project from. That is which task should we start from.

In Stalker, defining the start and end dates of a Task (also of an Asset, Shot
and Sequence) is called “Scheduling”. Stalker, with the help of TaskJuggler [http://www.taskjuggler.org/],
can solve this problem and define when the resource should work on a specific
task.

Warning

You should have TaskJuggler [http://www.taskjuggler.org/] installed in your system, and you should have
configured your Stalker installation to be able to find the tj3
executable.

On a linux system this should be fairly straight forward, just install
TaskJuggler [http://www.taskjuggler.org/] and stalker will be able to use it.

But for other OSes, like OSX and Windows, you should create an environment
variable called STALKER_PATH and then place a file called config.py
inside the folder that this path is pointing at. And then add the following
to this config.py:

tj_command = 'C:\\Path\\to\\tj3.exe'

The default value for tj_command config variable is
/usr/local/bin/tj3, so if on a Linux or OSX system when you run:

which tj3

is returning this value (/usr/local/bin/tj3) you don’t need to setup
anything.

So, lets schedule our project by using the Studio instance that we
have created at the beginning of this tutorial:

from stalker import TaskJugglerScheduler

my_studio.scheduler = TaskJugglerScheduler()
my_studio.duration = datetime.timedelta(days=365) # we are setting the
my_studio.schedule(scheduled_by=me) # duration to 1 year just
 # to be sure that TJ3
 # will not complain
 # about the project is not
 # fitting in to the time
 # frame.
DBsession.commit() # to reflect the change

This should take a little while depending to your projects size (around 1-2
seconds for this tutorial, but around ~15 min for a project with 15000+ tasks).

When it is finished all of your tasks now have their computed_start and
computed_end values filled with proper data. Now check the start and end
values:

print(previs.computed_start) # 2014-04-02 16:00:00
print(previs.computed_end) # 2014-04-15 15:00:00

print(matchmove.computed_start) # 2014-04-15 15:00:00
print(matchmove.computed_end) # 2014-04-17 13:00:00

print(anim.computed_start) # 2014-04-17 13:00:00
print(anim.computed_end) # 2014-04-23 17:00:00

print(lighting.computed_start) # 2014-04-23 17:00:00
print(lighting.computed_end) # 2014-04-24 11:00:00

print(comp.computed_start) # 2014-04-24 11:00:00
print(comp.computed_end) # 2014-04-24 17:00:00

The dates are probably going to be different in your computer. But as you see
Stalker has computed the start and end date values for each of the tasks. They
are simply following one other, this is because we have entered only one
resource for each of the task.

You should know that “Scheduling” is a huge concept and it is greatly explained
in TaskJuggler [http://www.taskjuggler.org/] documentation.

For a last thing you can check the to_tjp values of each data we have
created for now, so try running:

print(my_studio.to_tjp)
print(me.to_tjp)
print(comp.to_tjp)
print(new_project.to_tjp)

If you are familiar with TaskJuggler, you should recognize the output of each
to_tjp variable. So essentially Stalker is mapping all of its data to a
TaskJuggler compatible string. A very small part of TaskJuggler directives are
currently supported. But it is enough to schedule very complex projects with
complex dependency relation and Task hierarchies. And with every new version of
Stalker the supported TaskJuggler directives are expanded.

Part VI - Asset Management

Now we have created a lot of things but other then storing all the data in the
database, we didn’t do much. Stalker still doesn’t have information about a lot
of things. For example, it doesn’t know how to handle your asset versions
(Version) namely it doesn’t know how to store your data that you are
going to create while completing these tasks.

So what we need to define is a place in our file structure. It doesn’t need to
be a network shared directory but if you are not working alone than it means
that everyone needs to reach your data and the simplest way to do this is to
place your files in a network share, there are other alternatives like storing
your files locally and sharing your revisions with a Software Configuration
Management (SCM) system, Stalker doesn’t support the latter right now.

We are going to see the first alternative, which uses a network share in our
fileserver, and this network share is called a Repository in Stalker.

A repository is a file path, preferably a path which is mapped or mounted to
the same path on every computer in your studio (also you can use autofs
with an OpenLDAP server in which you can synchronize all off the mount points
on all of your workstations and render slaves at once).

In Stalker, you can have several repositories, let say one for Commercials and
another one for each big Movie projects.

You can define repositories and assign projects to those repositories.

We have already created a repository while creating our first project. But the
repository has missing information. A Repository object shows the path that we
create our projects into. Lets enter the paths for all the major operating
systems:

commercial_repo.linux_path = "/mnt/M/commercials"
commercial_repo.osx_path = "/Volumes/M/commercials"
commercial_repo.windows_path = "M:/commercials" # you can use reverse
 # slashes (\\) if you want

And if you ask for the path to a repository object it will always give the
correct answer according to your operating system:

print(commercial_repo.path)
under Windows outputs:
M:/commercials
#
in Linux and variants:
/mnt/M/commercials
#
and in OSX:
/Volumes/M/commercials

Note

Stalker always uses forward slashes no matter what operating system you are
using. It is like that even if you define your paths with reverse slashes
(\).

Assigning this repository to our project is not enough, Stalker still doesn’t
know about the directory structure of this project. To explain the project
structure to Stalker we use a Structure instance:

from stalker import Structure

commercial_project_structure = Structure(
 name="Commercial Projects Structure"
)

now assign this structure to our project
new_project.structure = commercial_project_structure

New in version 0.2.13: Starting with Stalker version 0.2.13 Project instances can have
multiple Repository instances attached. So you can create
complex templates where you can for example store published versions on a
different server/network share or you can setup so the outputs of a version
(like the rendered files) are stored on a different server, and etc.

The following examples are updated in a simple way and examples showing
the advantage of having multiple repositories will be added on later
versions.

Now we have created a very simple structure instance, but we still need to
create FilenameTemplate instances for Tasks which then will be used
by the Version instances to generate a consistent and meaningful path
and filename:

from stalker import FilenameTemplate

task_template = FilenameTemplate(
 name='Task Template for Commercials',
 target_entity_type='Task',
 path='$REPO{{project.repository.id}}/{{project.code}}/{%- for p in parent_tasks -%}{{p.nice_name}}/{%- endfor -%}',
 filename='{{version.nice_name}}_v{{"%03d"|format(version.version_number)}}'
)

and append it to our project structure
commercial_project_structure.templates.append(task_template)

commit to database
DBsession.commit() # no need to add anything, project is already on db

By defining a FilenameTemplate instance we have essentially told
Stalker how to store Version instances created for Task
entities in our Repository.

The data entered both to the path and filename arguments are Jinja2 [http://jinja.pocoo.org/]
directives. The Version class knows how to render these templates
while calculating its path and filename attributes.

Also, if you noticed we have used an environment variable “$REPO” along with
the id of the first repository in the project “{{project.repository.id}}”
(attention! project.repository always shows the first repository in the
project), this is a new feature introduced with Stalker version 0.2.13. Stalker
creates environment variables on runtime for each of the repository whenever a
repository is created and inserted in to the DB or it will create environment
variables for already existing repositories upon a successful database
connection.

Lets create a Version instance for one of our tasks:

from stalker import Version

vers1 = Version(
 task=comp
)

we need to update the paths
vers1.update_paths()

check the path and filename
print(vers1.path) # '$REPO33/FC/SH001/comp'
print(vers1.filename) # 'SH001_comp_Main_v001'
print(vers1.full_path) # '$REPO33/FC/SH001/comp/SH001_comp_Main_v001'

now the absolute values, values with repository root
because I'm running this code in a Linux laptop, my results are using the
linux path of the repository
print(vers1.absolute_path) # '/mnt/M/commercials/FC/SH001/comp'
print(vers1.absolute_full_path) # '/mnt/M/commercials/FC/SH001/comp/SH001_comp_Main_v001'

check the version_number
print(vers1.version_number) # 1

commit to database
DBsession.commit()

As you see, the Version instance magically knows where to place
itself and what to use as the filename. Thanks to Stalker it is now easy to
create version files where you don’t have weird file names (ex:
‘Shot1_comp_Final’, ‘Shot1_comp_Final_revised’,
‘Shot1_comp_Final_revised_Final’, ‘Shot1_comp_Final_revised_Final_real_final’
and the list goes on, we all know those filenames don’t we :)).

With Stalker the filename and path always follows strict rules.

Also by using the Version.is_published attribute you can define which
of the versions are usable and which are versions that you are still working
on:

vers1.is_published = False # I still work on this version, this is not a
 # usable one

Lets create another version for the same task and see what happens:

be sure that you've committed the previous version to the database
to let Stalker now what number to give for the next version
vers2 = Version(task=comp)
vers2.update_paths() # this call probably will disappear in next version of
 # Stalker, so Stalker will automatically update the
 # paths on Version.__init__()

print(vers2.version_number) # 2
print(vers2.filename) # 'SH001_comp_Main_v002'

before creating a new version commit this one to db
DBsession.commit()

now create a new version
vers3 = Version(task=comp)
vers3.update_paths()

print(vers3.version_number) # 3
print(vers3.filename) # 'SH001_comp_Main_v002'

Isn’t that nice, Stalker increments the version number automatically.

Also you can query all the versions of a specific task by:

using pure Python
vers_from_python = comp.versions # [<FC_SH001_comp_Main_v001 (Version)>,
 # <FC_SH001_comp_Main_v002 (Version)>,
 # <FC_SH001_comp_Main_v003 (Version)>]

or using a query
vers_from_query = Version.query.filter_by(task=comp).all()

again returns
[<FC_SH001_comp_Main_v001 (Version)>,
<FC_SH001_comp_Main_v002 (Version)>,
<FC_SH001_comp_Main_v003 (Version)>]

assert vers_from_python == vers_from_query

Note

Stalker stores Version.path and Version.filename
attributes in the database, so the values does not contain any OS specific
path. It will only show the OS specific path on
Version.absolute_path and on Version.absolute_full_path
attributes by joining the Repository.path with the path values from
database momentarily.

You can also setup your project structure to have default directories:

commercial_project_structure.custom_template = """
Temp
References
References/Movies
References/Images
"""

When the above template is executed each line will refer to a directory.

Part VII - Collaboration (not completed)

We came a lot from the start, but what is the use of an Production Asset
Management System if we can not communicate with our colleagues.

In Stalker you can communicate with others in the system, by:

	Leaving a Note to anything created in
Stalker (except you can not create a Note to another
Note and to a Tag).

	Sending a Message directly to them or to a group of users. (Not
implemented yet).

	Anyone can create a Ticket for a Project.

	You can create wiki Pages per Project.

Part VIII - Extending SOM (coming)

This part will be covered soon

Conclusion

In this tutorial, you have nearly learned a quarter of what Stalker supplies as
a Python library.

Stalker is a very flexible and powerful Production Asset Management system. As
of writing this tutorial it has been developed for the last 5 years (4 years
with the only developer being yours truly and for another 1 year where his wife
is also attended to the project) and it is currently been used in production of
a feature movie.

But it is only a Python library so it doesn’t supply any graphical user
interface.

There are other projects, namely Stalker Pyramid [https://www.github.com/eoyilmaz/stalker_pyramid] and Anima [https://github.com/eoyilmaz/anima] that is using
Stalker in their back ends. Stalker Pyramid [https://www.github.com/eoyilmaz/stalker_pyramid] is an Pyramid [http://www.pylonsproject.org/] based Web
application and Anima [https://github.com/eoyilmaz/anima] is a pipeline library.

You can clone their repositories to see how PyQt4 and PySide UIs are created
with Stalker (in Anima) and how it is used as the database model for a Web
application in Stalker Pyramid [https://www.github.com/eoyilmaz/stalker_pyramid].

Design

The design of Stalker is mentioned in the following sections.

Introduction

Stalker is an Open Source Production Asset Management Library. Although it is
designed VFX and Animation studios in mind, its flexible Project Management
muscles will allow it to be used in a wide variety of fields.

An Asset Management Systems’ duty is to hold the data which are created by the
users of the system in an organised manner, and let them quickly reach and find
their files. A Production Asset Management Systems’ duty is, in addition to the
asset management systems’, also handle the production steps or tasks and
allow the users of the system to collaborate. If more information about this
subject is needed, there are great books about Digital Asset Management (DAM)
Systems.

The usage of an asset management system in an animation/vfx studio is a must
for the sake of the studio itself. Even the benefits of the system becomes
silly to be mentioned when compared to the lack of even a simple system to
organise stuff.

Every studio outside establishes and develops their own asset management
system. Stalker will try to be the framework that these proprietary asset
management systems will be build over. Thus reducing the work repeated on every
big projects’ start.

Concepts

There are a couple of design concepts those needs to be clarified before any
further explanation of Stalker.

Stalker on itself basically is the Model in an MTV system (where the
Stalker Pyramid [https://pypi.python.org/pypi/stalker_pyramid] is the Template and View). So it defines the data and
the interaction of the data with itself.

Because the idea behind Stalker was to build an open source library that any
studio using it can build their own pipeline on top of it, it is designed to
stay simple and solid at the same time. So the UI and other stuff is ripped off
from the original Stalker package and moved to another Pyramid web application
called Stalker Pyramid [https://pypi.python.org/pypi/stalker_pyramid].

Stalker Object Model (SOM)

Stalker has a very robust object model, which is called
Stalker Object Model or SOM. The idea behind SOM is to create a class
hierarchy which is both usable right out of the box and also expandable by the
studios’ developers. SOM is actually a little bit more complex than a basic
possible model, it is designed in this way just to be able to create a simple
pipeline to be able to build the system over it.

Lets look at how a simple studio works and try to create our asset management
concepts around it.

An animation/vfx studios duty is to complete a Project. A project,
generally is about to create a Sequence of Shots which
are a series of images those at the end converts to a movie. So a sequence in
general contains Shots. And Shots can use Assets. So basically to
complete a project the studio should complete the shots and assets needed by
those shots.

Furthermore all the Projects, Sequences, Shots or Assets are divided in to
different Tasks those need to be done sequentially or in parallel
to complete that project.

A Task relates to a work, a work is a quantity of time spent or going to be
spend for that specific task. The time spent on the course of completion of a
Task can be recorded with TimeLogs. TimeLogs show the total time
spent by an artist for a certain Task. So it holds information about how much
effort has been spent to complete a Task.

During the completion of the Task or at the end of the work a User creates
Versions for that particular Task. Versions are the different
incarnations or the progress of the resultant product, and it is connected to
files in the fileserver or in Stalkers term the Repository.

All the names those shown in bold fonts are a class in SOM. and there are a
series of other classes to accommodate the needs of a Studio.

The inheritance diagram of the classes in the SOM is shown below:

Inheritance Diagram

Stalker is a configurable and expandable and most importantly it is an
open source system. All of these features allows the system to have a flexible
structure.

There are two levels of expansion, the first level is the simplest one, by just
adding different statuses, different types or these kind of things in
which Stalker’s current design is ready to. This is explained in How To
Customize Stalker.

The second level of expansion is achieved by expanding the SOM. Expanding the
SOM includes creating new classes and database tables, and updating the old
ones which are already coming with Stalker. These expansion schemes are
further explained in How To Extend SOM.

Features

	Developed purely in Python (2.6 and over) using TDD (Test Driven
Development) practices

	SQLAlchemy for the database back-end and ORM

	Uses Jinja2 as the template system for the file and folder naming
convention, it is possible to use templates like:

{repository.path}/{project.code}/Assets/{asset.type.name}/{asset.code}/
{asset.name}_{asset.type.name}_v{version.version_number}.{version.extension}

	File and folders and file sequences can be uploaded to the server as
assets, and the server decides where to place the folder or file by using
the template system.

	The event system gives full control for every CRUDL (create/insert, read,
update, delete and list) by giving step like before insert, after insert
call-backs.

	The messaging system allows the users collaborate efficiently.

	Has an embedded Ticket system.

	Uses TaskJuggler as the task management backend and supports basic Task
attributes.

	Has a predefined workflow for task statuses called Task Status Workflow
which manages the statuses of a Task during the project completion.

For usage examples see API Tutorial.

How To Customize Stalker

This part explains the customization of Stalker.

How To Extend SOM

This part explains how to extend Stalker Object Model or SOM.

Creating Data

There are some examples here, to create simple data.

Creating a Project

To create a Project, we need:

	A Repository

	A Structure object to define the file structure of the Project:

	FilenameTemplates for Task, Asset, Shot, Sequence types, to define the
placement of the Versions created for them.

	An ImageFormat to define the output size of the project.

	A StatusList with enough Statuses that will define the desired Project
Statuses. Stalker doesn’t have a Project Status Workflow, yet! so define
yours.

	If desired we can also add a Type for the Project to distinguish commercials
from Feature Film projects.

	We need to create a user as the lead for the project.

Here is the code:

from stalker import (db, Repository, Structure, FilenameTemplate, StatusList,
 Status, Task, User)

first setup the database connection (assuming that you have a config.py
defined, so we do not need to supply a database address)
db.setup()

initialize the database just for the first time
db.init() # run this only for the first time, subsequent runs will not
 # create any errors, but it is unnecessary

re-use Statuses NEW, WIP and CMPL from default statuses
status_new = Status.query.filter_by(code='NEW').first()
status_wip = Status.query.filter_by(code='WIP').first()
status_cmpl = Status.query.filter_by(code='CMPL').first()

and create a new one
status_on_air = Status(name='On Air', code='OA')

status list for project
project_status_list = StatusList(
 name='Project Statuses',
 target_entity_type='Project',
 statuses=[
 status_new,
 status_wip,
 status_cmpl,
 status_on_air
],
)

image_format_hd = ImageFormat(
 name="HD",
 width=1920,
 height=1080,
)

commercial_type = Type(
 name='Commercial',
 code='COMM',
 target_entity_type='Project'
)

repo = Repository(
 name='Commercials Repo',
 linux_path='/mnt/T/Commercials/',
 windows_path='T:/Commercials/',
 osx_path='/Volumes/T/Commercials/'
)

commercial_structure = Structure(
 name='Commercial Project Structure',
 code=''
)

lead = User(
 name='Erkan Ozgur Yilmaz',
 login='eoyilmaz',
 email='eoyilmaz@stalker.com',
 password='secret'
)

lets create the Project
proj1 = Project(
 name='Test Project',
 code='TP',
 description="This is the first project",
 lead=lead,
 image_format=image_format_hd,
 fps=25,
 type=commercial_type,
 structure=commercial_structure,
 repository=repo,
 status_list=project_status_list,
 status=status_new
)

just add the project to the database
from stalker.db.session import DBSession
DBSession.add(proj1)

and commit the data to database
DBSession.commit()

It may seem too much for just creating a Project, but it is for the first time
only. For a second project, we can use the previous Repository, Structure,
Lead, StatusList etc.

Create a Task

Because we have a project now lets create a task for this project:

connect to the database if you have not done yet
db.setup()

create a new user as the resource for the task
resource1 = User(
 name='User1',
 login='user1',
 email='user@users.com',
 password='secret'
)

now create the task
task1 = Task(
 name='Task1',
 description="This is our first Task, and it is about, creating "
 "something fancy",
 resources=[resource1],
 schedule_timing=1,
 schedule_unit='d',
 schedule_model='effort',
 project=proj1
)
we do not need to supply a StatusList for the Task, statuses for tasks are
created by default when we called db.init() in previous example

add it to the database
DBSession.add(task1)

and commit
DBSession.commit()

Now we have created a simple Task and assigned it to the resource1. Lets check
the status of the Task:

print(task1.status)
this should print something like <Ready To Start (RTS) (Status)>
stating that our task is ready to start working on.

Configuring Stalker

To configure Stalker and make it fit to your Studios need you should use the
config.py file as mentioned in next sections.

config.py File

Stalker uses the config.py to let one to customize the system config.

The config.py file is searched in a couple of places through the system:

	under “~/.strc/” directory (not yet)

	under “$STALKER_PATH”

The first path is a folder in the users home dir. The second one is a path
defined by the STALKER_PATH environment variable.

Defining the config.py by using the environment variable gives the most
customizable and consistent setup through the studio. You can set
STALKER_PATH to a shared folder in your fileserver where all the users can
access.

Because, config.py is a regular Python code which is executed by
Stalker, you can do anything you were doing in a normal Python
script. This is very handy (also dangerous!) if you have another source of
information which is reachable by a Python script.

If there is no STALKER_PATH variable in your current environment or it is
not showing an existing path or there is no config.py file the system will
use the system defaults.

Config Variables

Variables which can be set in config.py are as follows:

	
actions

	Actions for authorization system. These are used to create ACLs. Stalker
uses CRUDL [http://en.wikipedia.org/wiki/Create,_read,_update_and_delete] system. Default value is:

actions = ['Create', 'Read', 'Update', 'Delete', 'List'] #CRUDL

	
auto_create_admin

	Tells Stalker to create an admin by default. Default value is:

auto_create_admin = True

	
admin_name

	The default admin user name. Default value is:

admin_name = 'admin'

	
admin_login

	The default admin login. Default value is:

admin_login = 'admin'

	
admin_password

	The default admin password. Default value is:

admin_password = 'admin'

	
admin_email

	The default email for admin user. Default value is:

admin_email = 'admin@admin.com'

	
admin_department_name

	The default department name for admin. Default value is:

admin_department_name = 'admins'

	
admin_group_name

	The default admin permission group name. Default value is:

admin_group_name = 'admins'

	
database_engine_settings

	A dictionary of config values. The default value is:

database_engine_settings = {
 "sqlalchemy.url": "sqlite:///:memory:",
 "sqlalchemy.echo": False,
}

	
database_session_settings

	This value is not used.

	
local_storage_path

	The local storage path for Stalker.

local_storage_path = os.path.expanduser(‘~/.strc’)

	
local_session_data_file_name

	The per user or local session file name. It is used for storing logged in
user info. The default value is:

local_session_data_file_name = 'local_session_data'

	
server_side_storage_path

	Storage for uploaded files. This used by Stalker Pyramid [https://pypi.python.org/pypi/stalker_pyramid] and shows the
server side storage path. Will be moved to Stalker Pyramid in later
versions. Not used by Stalker by default. Default value is:

server_side_storage_path = os.path.expanduser('~/Stalker_Storage')

	
key

	The default keyword which is going to be used in password scrambling.
Default value is:

key = "stalker_default_key"

	
version_take_name

	The default take name for Version
instances. Default value is:

version_take_name = "Main"

	
status_bg_color

	Default background color for Status
instances. Default value is:

status_bg_color = 0xffffff

	
status_fg_color

	Default foreground color for Status
instances. Default value is:

status_fg_color = 0x000000

	
ticket_label

	Default ticket label. Used by Ticket when
generating a ticket name. Default value is:

ticket_label = "Ticket"

	
ticket_status_order

	Defines the ticket statuses and the order of them. Default value is:

ticket_status_order = [
 'new', 'accepted', 'assigned', 'reopened', 'closed'
]

	
ticket_resolutions

	Defines the default ticket resolutions. Default value is:

ticket_resolutions = [
 'fixed', 'invalid', 'wontfix', 'duplicate', 'worksforme', 'cantfix'
]

	
ticket_workflow

	Defines the default ticket workflow. It is a dictionary of actions. Shows
the new status per action. Default value is:

ticket_workflow = {
 'resolve' : {
 'new': {
 'new_status': 'closed',
 'action': 'set_resolution'
 },
 'accepted': {
 'new_status': 'closed',
 'action': 'set_resolution'
 },
 'assigned': {
 'new_status': 'closed',
 'action': 'set_resolution'
 },
 'reopened': {
 'new_status': 'closed',
 'action': 'set_resolution'
 },
 },
 'accept' : {
 'new': {
 'new_status': 'accepted',
 'action': 'set_owner'
 },
 'accepted': {
 'new_status': 'accepted',
 'action': 'set_owner'
 },
 'assigned': {
 'new_status': 'accepted',
 'action': 'set_owner'
 },
 'reopened': {
 'new_status': 'accepted',
 'action': 'set_owner'
 },
 },
 'reassign': {
 'new': {
 'new_status': 'assigned',
 'action': 'set_owner'
 },
 'accepted': {
 'new_status': 'assigned',
 'action': 'set_owner'
 },
 'assigned': {
 'new_status': 'assigned',
 'action': 'set_owner'
 },
 'reopened': {
 'new_status': 'assigned',
 'action': 'set_owner'
 },
 },
 'reopen': {
 'closed': {
 'new_status': 'reopened',
 'action': 'del_resolution'
 }
 }
}

	
timing_resolution

	Defines the default timing resolution for classes which are mixed with
DateRangeMixin. Stalker uses the
TaskJuggler default timing resolution which is 1 hour:

timing_resolution = datetime.timedelta(hours=1)

	
task_duration

	Defines the default task duration. If only a start or end value is entered
for a Task then Stalker calculates the other
value by adding or subtracting the default task duration value from it.
Default value is 1 hour:

task_duration = datetime.timedelta(hours=1)

	
task_priority

	Defines the default task priority. This is used by TaskJuggler to prioritize
tasks. Should be a number between 0 and 1000. Default value is 500:

task_priority = 500

	
working_hours

	Defines the default weekly working hours per week day. Stalker uses the
TaskJuggler default value of 9am to 6pm. The values entered are minutes from
midnight, and it is a list of lists of two integers. Each list of two
integers shows a working hour interval. Default value is:

working_hours = {
 'mon': [[540, 1080]], # 9:00 - 18:00
 'tue': [[540, 1080]], # 9:00 - 18:00
 'wed': [[540, 1080]], # 9:00 - 18:00
 'thu': [[540, 1080]], # 9:00 - 18:00
 'fri': [[540, 1080]], # 9:00 - 18:00
 'sat': [], # saturday off
 'sun': [], # sunday off
}

	
daily_working_hours

	Defines the default daily working hour. This is strongly related with the
working_hours, weekly_working_hours, weekly_working_days and
yearly_working_days settings and shows a mean value of daily working
hour. Default value is 9:

daily_working_hours = 9

	
weekly_working_hours

	Defines the default weekly working hour. This is strongly related with the
working_hours, daily_working_hours, weekly_working_days and
yearly_working_days settings. Default value is 45:

weekly_working_hours = 45

	
weekly_working_days

	Defines the default weekly working days. This is strongly related with the
working_hours, daily_working_hours, weekly_working_hours and
yearly_working_days settings. Default value is 5:

weekly_working_days = 5

	
yearly_working_days

	Defines the default yearly working days. This is strongly related with the
working_hours, daily_working_hours, weekly_working_hours and
weekly_working_days settings. Default value is 260.714 which equals
weekly_working_days * 52.1428:

yearly_working_days = 260.714

	
day_order

	Defines the order of the week days. Default value uses European system:

day_order = ['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun']

	
datetime_units

	Defines the date and time units. The order should match the
datetime_unit_names setting. Default value is:

datetime_units = ['min', 'h', 'd', 'w', 'm', 'y']

	
datetime_unit_names

	Defines the names of date and time units. The order should match the
datetime_units setting. Default value is:

datetime_unit_names = ['minute', 'hour', 'day', 'week', 'month', 'year']

	
datetime_units_to_timedelta_kwargs

	Defines the conversion ratios of each date and time unit. Default value is:

datetime_units_to_timedelta_kwargs = {
 'min': {'name': 'minutes', 'multiplier': 1},
 'h' : {'name': 'hours' , 'multiplier': 1},
 'd' : {'name': 'days' , 'multiplier': 1},
 'w' : {'name': 'weeks' , 'multiplier': 1},
 'm' : {'name': 'days' , 'multiplier': 30},
 'y' : {'name': 'days' , 'multiplier': 365}
}

	
task_schedule_models

	Defines the default schedule models. These are highly related with
TaskJuggler, so anything entered here should exist in TaskJuggler. Default
value is:

task_schedule_models = ['effort', 'length', 'duration']

	
task_schedule_constraints

	Defines the default schedule constraints. The order also defines a binary
number corresponding to each value (00: none, 01: start, 10:end, 11:both)
and used in defining which side of a Task is constrained to a date. Also
used by TaskJuggler to constrain the start or end or both dates of a task to
a certain date. Also a Task with schedule_constraint is set to 2 (both) is
considered a duration task even if its schedule_model is set to
effort or length. Default value is:

task_schedule_constraints = ['none', 'start', 'end', 'both']

	
tjp_working_hours_template

	Defines a Jinja2 template for converting
WorkingHours instances to a TaskJuggler
compatible string. By default Stalker converts a WorkingHours instance to a
workinghours statement in TaskJuggler. Default value is:

tjp_working_hours_template = """{% macro wh(wh, day) -%}
{%- if wh[day]|length %} workinghours {{day}} {% for part in wh[day] -%}
 {%- if loop.index != 1%}, {% endif -%}
 {{"%02d"|format(part[0]//60)}}:{{"%02d"|format(part[0]%60)}} - {{"%02d"|format(part[1]//60)}}:{{"%02d"|format(part[1]%60)}}
 {%- endfor -%}
{%- else %} workinghours {{day}} off
{%- endif -%}
{%- endmacro -%}
{{wh(workinghours, 'mon')}}
{{wh(workinghours, 'tue')}}
{{wh(workinghours, 'wed')}}
{{wh(workinghours, 'thu')}}
{{wh(workinghours, 'fri')}}
{{wh(workinghours, 'sat')}}
{{wh(workinghours, 'sun')}}"""

	
tjp_studio_template

	Defines a Jinja2 template for converting a
Studio instance to a TaskJuggler compatible
string. By default Stalker converts a Studio instance to a project
statement in TaskJuggler. Default value is:

tjp_studio_template = """project {{ studio.tjp_id }} "{{ studio.name }}" {{ studio.start.date() }} - {{ studio.end.date() }} {
 timingresolution {{ '%i'|format((studio.timing_resolution.days * 86400 + studio.timing_resolution.seconds)//60|int) }}min
 now {{ studio.now.strftime('%Y-%m-%d-%H:%M') }}
 dailyworkinghours {{ studio.daily_working_hours }}
 weekstartsmonday
{{ studio.working_hours.to_tjp }}
 timeformat "%Y-%m-%d"
 scenario plan "Plan"
 trackingscenario plan
}
"""

	
tjp_project_template

	Defines a Jinja2 template for converting a
Project instance to a TaskJuggler
compatible string. By default Stalker converts a Project instance to a
task statement in TaskJuggler. Default value is:

tjp_project_template = """task {{project.tjp_id}} "{{project.name}}" {
 {% for task in project.root_tasks %}
 {{task.to_tjp}}
 {% endfor %}
}
"""

	
tjp_task_template

	Defines a Jinja2 template for converting a
Task instance to a TaskJuggler compatible
string. By default Stalker converts a Task to a task statement in
TaskJuggler. Default value is:

tjp_task_template = """task {{task.tjp_id}} "{{task.name}}" {
{% if task.priority != 500 -%}priority {{task.priority}}{%- endif %}
{%- if task.depends %}
 depends {% for depends in task.depends %}
 {%- if loop.index != 1 %}, {% endif %}{{depends.tjp_abs_id}}
{%- endfor -%}
{%- endif -%}
{%- if task.is_container -%}
 {%- for child_task in task.children %}
 {{ child_task.to_tjp }}
 {%- endfor %}
{%- else %}
 {% if task.resources|length -%}
 {% if task.schedule_constraint %}
 {%- if task.schedule_constraint == 1 or task.schedule_constraint == 3 -%}
 start {{ task.start.strftime('%Y-%m-%d-%H:%M') }}
 {%- endif %}
 {%- if task.schedule_constraint == 2 or task.schedule_constraint == 3 %}
 end {{ task.end.strftime('%Y-%m-%d-%H:%M') }}
 {%- endif -%}
 {% endif %}
 {{task.schedule_model}} {{task.schedule_timing}}{{task.schedule_unit}}
 allocate {% for resource in task.resources -%}
 {%-if loop.index != 1 %}, {% endif %}{{resource.tjp_id}}{% endfor %}
 {%- endif -%}
 {% for time_log in task.time_logs %}
 booking {{time_log.resource.tjp_id}} {{time_log.start.strftime('%Y-%m-%d-%H:%M:%S')}} +{{'%i'|format(time_log.duration.days*24 + time_log.duration.seconds/3600)}}h { overtime 2 }
 {%- endfor -%}
{% endif %}
}
"""

	
tjp_department_template

	Defines a Jinja2 template for converting a
Department instance to a TaskJuggler
compatible string. By default Stalker converts a Department to a
resource statement in TaskJuggler. Default value is:

tjp_department_template = '''resource {{department.tjp_id}} "{{department.name}}" {
{%- for resource in department.users %}
 {{resource.to_tjp}}
{%- endfor %}
}'''

	
tjp_vacation_template

	Defines a Jinja2 template for converting a
Vacation instance to a TaskJuggler
compatible string. By default Stalker converts a Vacation instance to a
vacation statement in TaskJuggler. Default value is:

tjp_vacation_template = '''vacation {{ vacation.start.strftime('%Y-%m-%d-%H:%M') }}, {{ vacation.end.strftime('%Y-%m-%d-%H:%M') }}'''

	
tjp_user_template

	Defines a Jinja2 template for converting a
User instance to a TaskJuggler resource
statement. Default value is:

tjp_user_template = '''resource {{user.tjp_id}} "{{user.name}}"{% if user.vacations %} {
 {% for vacation in user.vacations -%}
 {{vacation.to_tjp}}
 {% endfor -%}
}{% endif %}'''

	
tjp_main_template

	Defines a Jinja2 template for converting all the information coming from
Stalker to a TaskJuggler compatible tjp file. Default value is:

tjp_main_template = """# Generated By Stalker v{{stalker.__version__}}
{{studio.to_tjp}}

resources
resource resources "Resources" {
{%- for user in studio.users %}
 {{user.to_tjp}}
{%- endfor %}
}

tasks
{% for project in studio.active_projects %}
 {{project.to_tjp}}
{% endfor %}

reports
taskreport breakdown "{{csv_file_full_path}}"{
 formats csv
 timeformat "%Y-%m-%d-%H:%M"
 columns id, start, end
}
"""

	
tj_command

	Defines the TaskJuggler command. Stalker uses this configuration value to
call TaskJugglers tj3 command.

tj_command = ‘/usr/local/bin/tj3’,

	
path_template

	Defines a default value for path template for
FilenameTemplate instances to be used by
Version instances. This value is not used
yet. Default value is:

path_template = '{{project.code}}/{%- for parent_task in parent_tasks -%}{{parent_task.nice_name}}/{%- endfor -%}'

	
filename_template

	Defines a default value for filename template for
FilenameTemplate instances to be used by
Version instances. This value is not used
yet. Default value is:

filename_template = '{{task.entity_type}}_{{task.id}}_{{version.take_name}}_v{{"%03d"|format(version.version_number)}}'

	
sequence_format

	Defines the default file sequence format to be used with PySeq [http://rsgalloway.github.com/pyseq/]. This
value is not used yet. Default value is:

sequence_format = "%h%p%t %R"

Fore details about the format see the PySeq documentation [http://rsgalloway.github.com/pyseq/].

	
file_size_format

	Defines the default file size format to be used in UI. Default value is:

file_size_format = "%.2f MB"

	
date_time_format

	Defines the default datetime format to be used in UI and string
representations of datetime.datetime instances. Default value is:

date_time_format = '%Y.%m.%d %H:%M'

	
resolution_presets

	Defines default resolution presets. This value is not used yet. Default
value is:

resolution_presets = {
 "PC Video": [640, 480, 1.0],
 "NTSC": [720, 486, 0.91],
 "NTSC 16:9": [720, 486, 1.21],
 "PAL": [720, 576, 1.067],
 "PAL 16:9": [720, 576, 1.46],
 "HD 720": [1280, 720, 1.0],
 "HD 1080": [1920, 1080, 1.0],
 "1K Super 35": [1024, 778, 1.0],
 "2K Super 35": [2048, 1556, 1.0],
 "4K Super 35": [4096, 3112, 1.0],
 "A4 Portrait": [2480, 3508, 1.0],
 "A4 Landscape": [3508, 2480, 1.0],
 "A3 Portrait": [3508, 4960, 1.0],
 "A3 Landscape": [4960, 3508, 1.0],
 "A2 Portrait": [4960, 7016, 1.0],
 "A2 Landscape": [7016, 4960, 1.0],
 "50x70cm Poster Portrait": [5905, 8268, 1.0],
 "50x70cm Poster Landscape": [8268, 5905, 1.0],
 "70x100cm Poster Portrait": [8268, 11810, 1.0],
 "70x100cm Poster Landscape": [11810, 8268, 1.0],
 "1k Square": [1024, 1024, 1.0],
 "2k Square": [2048, 2048, 1.0],
 "3k Square": [3072, 3072, 1.0],
 "4k Square": [4096, 4096, 1.0],
}

	
default_resolution_preset

	Defines the default resolution preset fro new Projects. This value is not
used yet. Default value is:

default_resolution_preset = "HD 1080"

	
project_structure

	Defines the default project structure. This value is not used by Stalker.
Default value is:

project_structure = """{% for shot in project.shots %}
 Shots/{{shot.code}}
 Shots/{{shot.code}}/Plate
 Shots/{{shot.code}}/Reference
 Shots/{{shot.code}}/Texture
 {% endfor %}
{% for asset in project.assets%}
 {% set asset_path = project.full_path + '/Assets/' + asset.type.name + '/' + asset.code %}
 {{asset_path}}/Texture
 {{asset_path}}/Reference
{% endfor %}
"""

	
thumbnail_format

	Defines the default thumbnail format. This value is not used by Stalker.
Default value is:

thumbnail_format = "jpg"

	
thumbnail_quality

	Defines the default thumbnail quality. This value is not used by Stalker.
Default value is:

thumbnail_quality = 70

	
thumbnail_size

	Defines the defaul thumbnail size. This value is not used by Stalker.
Default value is:

thumbnail_size = [320, 180]

Upgrading Database

Introduction

From time to time, with new releases of Stalker, your Stalker database may need
to be upgraded. This is done with the Alembic [http://alembic.zzzcomputing.com/en/latest/] library, which is a database
migration library for SQLAlchemy [http://www.sqlalchemy.org].

Instructions

The upgrade is easy, just run the following command on the root of the stalker
installation directory:

for Windows
..\Scripts\alembic.exe upgrade head

for Linux or OSX
../bin/alembic upgrade head

this should output something like that:
#
INFO [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO [alembic.runtime.migration] Will assume transactional DDL.
INFO [alembic.runtime.migration] Running upgrade 745b210e6907 -> f2005d1fbadc, added ProjectClients

That’s it, your database is now migrated to the latest version.

How To Contribute

Stalker started as an Open Source project with the expectation of
contributions. The soul of the open source is to share the knowledge and
contribute.

	These are the areas that you can contribute to:

	
	Documentation

	Testing the code

	Writing the code

	Creating user interface elements (graphics, icons etc.)

Development Style

Stalker is developed strictly by following TDD [http://en.wikipedia.org/wiki/Test-driven_development] practices. So every
participant should follow TDD methodology. Skipping this steps is highly
prohibited. Every added code to the trunk should have a corresponding test and
the tests should be written before implementing a single line of code.

DRY [http:http://en.wikipedia.org/wiki/Don%27t_repeat_yourself] is also another methodology that a participant should follow. So nothing
should be repeated. If something needs to be repeated, then it is a good sign
that this part needs to be in a special module, class or function.

Testing

As stated above all the code written should have a corresponding test.

Adding new features should start with design sketches. These sketches could be
plain text files or mind maps or anything that can express the thing in you
mind. While writing down these sketches, it should be kept in mind that these
files also could be used to generate the documentation of the system. So
writing down the sketches as rest files inside the docs is something very
meaningful.

The design should be followed by the tests. And the test should be followed by
the implementation, and the implementation should be followed by tests again,
until you are confident about your code and it is rock solid. Then the
refactoring phase can start, and because you have enough tests that will keep
your code doing a certain thing, you can freely change your code, because you
know that you code will do the same thing if it passes all the tests.

The first tests written should always fail by having:

self.fail("the test is not implemented yet")

failures. This is something good to have. This will inform us that the test is
not written yet. After blocking all the tests and you are confident about the
tests are covering all the aspects of your design sketches, you can start
writing the tests.

Another very important note about the tests are the docstrings of the test
methods. You should explain what is this test method testing, and what you
expect as a result of the test. It

After finishing implementing the tests you can start adding the code that will
pass the tests.

The test framework of Stalker is unitTest and nose to help testing.

These python modules should be installed to test Stalker properly:

	Nose

	Coverage

The coverage of the tests should be kept as close as possible to %100.

There is a helper script in the root of the project, called doTests. This is
a shell script for linux, which runs all the necessary tests and prints the
tests results and the coverage table.

Note

From version 0.1.1 the use of Mocker library is discontinued. The tests are
done using real objects. It is done in this way cause the design of the
objects were changing too quickly, and it started to be a guess work to see
which of the tests are effected by this changes. So the Mocker is removed and
it will not be used in future releases.

Coding Style

For the general coding style every participant should strictly follow PEP 8 [http://www.python.org/dev/peps/pep-0008/]
rules, and there are some extra rules as listed below:

	Class names should start with an upper-case letter, function and method
names should start with lower-case letter:

class MyClass(object):
 """the doc string of the class
 """

 def __init__(self):
 pass

 def my_method(self):
 pass

	There should be 1 spaces before and after functions and class methods:

class StatusBase(object):
 """The StatusBase class
 """

 def __init__(self, name, abbreviation, thumbnail=None):
 self._name = self._checkName(name)

 def _checkName(self, name):
 """checks the name attribute
 """

 if name == "" or not isinstance(name, str):
 raise(ValueError("the name shouldn't be empty and it should \
 be a str"))

 return name.title()

	And also there should be 1 spaces before and after a class body:

#-*- coding: utf-8 -*-

class A(object):
 pass

class B(object):
 pass

pass

	Any lines that may contain a code or comment can not be longer than 79
characters, all the longer lines should be cancelled with “" character and
should continue properly from the line below:

def _checkName(self, name):
 """checks the name attribute
 """

 if name == "" or not isinstance(name, str):
 raise(ValueError("the name shouldn't be empty and it should be a \
 str"))

 return name.title()

This rule is not followed for the first line of the docstrings and in long
function or method names (particularly in tests).

	If anything is going to be checked against being None you should do it in
this way:

if a is None:
 pass

	Do not add docstrings to __init__ rather use the classes’ own docstring.

	The first line in the docstring should be a brief summary separated from the
rest by a blank line.

If you are going to add a new python file (*.py), use the following line in
the first line:

#-*- coding: utf-8 -*-

SCM - Git

The choice of SCM is Git. Every developer should be familiar with it. It
is a good start to go the Git Web Site [https://git-scm.com/] and do the tutorial if you
don’t feel familiar enough with hg.

Adding Changes

Stalker is hosted in GitHub [https://github.com/eoyilmaz/stalker].

If you want to do changes in Stalker, the basic pipeline is as follows:

	Fork Stalker from GitHub [https://github.com/eoyilmaz/stalker] project page.

	Clone your own Stalker repository to your own computer.

	Do your addition, run your tests, and be sure that your part doesn’t have
any errors or failures.

	Commit your changes.

	Before creating a pull request check if your repository is in sync with the
upstream GitHub repository (the repository that you’ve forked Stalker from)
by using the tools supplied in your GitHub project page.

	In case there are new changes in upstream, merge them with yours.

	Do the tests again. If there are problems in your part of the code, solve
the errors/failures.

	Commit your changes again.

	And push them to your own GitHub repository.

	And in the original GitHub [https://github.com/eoyilmaz/stalker] page create a Pull Request.

Stalker Development Roadmap

This section describes the direction Stalker is going.

Roadmap Based on Versions

Below you can find the roadmap based on the version

0.1.0:

	A complete working set of models in SOM which are using
SQLAlchemy.ext.declarative.

0.2.0:

	Web interface

	Complete ProdAM capabilities.

0.3.0:

	Complete working Event system

Stalker Changes

0.2.24

	New: Repository instances now have a code attribute which is
used for generating the environment variables where in previous versions the
id attribute has been used which caused difficulties in transferring the
data to a different installation of Stalker. Also to make the system
backwards compatible, Stalker will still set the old id based environment
variables. But when asked for an environment variable it will return the
code based one. The code argument as usual has to be initialized on
Repository instance creation. That’s why this version is slightly
backwards incompatible and needs the database to be updated with Alembic
(with the command alembic update head).

	Fix: Repository methods is_in_repo and find_repo are now case
insensitive for Windows paths.

	Update: Updated Project class documentation and included information
about what is going to be deleted or how the delete operation will be
cascaded when a Project instance is deleted.

0.2.23

	Update: Updated the setup.py to require psycopg2-binary instead
of psycopg2. Also updated the configuration files for Docker and Travis.
This changes the requirement of psycopg2 to psycopg2-binary, which will make
it easier to get the installation to complete on e.g. CentOS 7 without
requiring pg_config.

0.2.22

	Fix: Fixed TaskJugglerScheduler.schedule() method to correctly decode
byte data from sys.stderr to string for Python 3.x.

	Fix: Fixed a couple of tests for TaskJuggler.

	Update: Updated Classifiers information in setup.py, removed Python
versions 2.6, 3.0, 3.1 and 3.2 from supported Python versions.

	Fix: Removed Python 3.3 from TravisCI build which is not supported by
pytest apparently.

	Update: Updated TravisCI config and removed Python 2.6 and added Python
3.6.

	Update: Added a test case for an edge usage of FilenameTemplate.

	Update: Updated .gitignore file to ignore PyTest cache folder.

	Update: Updated the License file to correctly reflect the project license
of LGPLv3.

	Update: Update copyright information.

	New: Created make_html.bat for Windows.

	New: Added support for Python wheel.

0.2.21

	New: Switched from nose + unittest to pytest as the main
testing framework (with pytest-xdist tests complete 4x faster).

	New: Added DBSession.save() shortcut method for convenience which
does an add or add_all (depending to the input) followed by a
commit at once.

	Update: Updated the about page for a more appealing introduction to the
library.

	New: Stalker now creates default StatusList for Project instances
on database initialization.

	Update: SQLite3 support is back. In fact it was newer gone. For
simplicity of first time users the default database is again SQLite3. It was
dropped for the sake of adding more PostgreSQL oriented features. But then it
is recognized that the system can handle both. Though a two new Variant had
to be created for JSON and Datetime columns.

	Update: With the reintroduction of SQLite3, the new JSON type column in
WorkingHours class has been upgraded to support SQLite3. So with SQLite3
the column stores the data as TEXT but seamlessly convert them to JSON when
ORM loads or commits the data.

	New: Added ConfigBase as a base class for Config to let it be
used in other config classes.

	Fix: Fixed testing.create_db() and testing.drop_db() to fallback
to subprocess.check_call method for Python 2.6.

	Fix: Fixed stalker.models.auth.User._validate_password() method to
work with Python 2.6.

	Update: Updated all of the tests to use pytest style assertions to
support Python 2.6 along with 2.7 and 3.0+.

	Fix: Fixed stalker.db.check_alembic_version() function to invalidate
the connection, so it is not possible to continue with the current session,
preventing users to ignore the raised ValueError when the
alembic_version of the database is not matching the alembic_version
of Stalker’s current version.

0.2.20

	New: Added goods attribute to the Client class. To allow special
priced Goods to be created for individual clients.

	Fix: The WorkingHours class is now derived from Entity thus it is
not stored in a PickleType column in Studio anymore. (issue: #44)

	Update: Updated appveyor.yml to match travis.yml.

0.2.19

	Update: Updated the stalker.config.Config.database_engine_settings to
point the test database.

	Fix: Fixed a bug in stalker.testing.UnitTestDBBase.setUp() where it
was not considering the existence of the STALKER_PATH environment
variable while doing the tests.

	Update: Removed debug message from db.setup() which was revealing the
database password.

	Update: Updated the UnitTestDBBase, it now creates its own test
database, which allows all the tests to run in an individual database. Thus,
the tests can now be run in multiprocess mode which speeds things a lot.

	Fix: Removed any module level imports of stalker.defaults variable,
which can be changed by a Studio (or by tests) and should always be
refreshed.

	Update: Removed the module level import of the
stalker.db.session.DBSession in stalker.db, so it is not possible to
use db.DBSession anymore.

	Update: The import statements that imports stalker.defaults moved to
local scopes to allow runtime changes to the defaults to be reflected
correctly.

	Update: Added Python fall back mode to
stalker.shot.Shot._check_code_availability() which runs when there is no
database.

	Update: stalker.models.task.TimeLog._validate_task() is now getting
the Status instances from the StatusList that is attached to the
Task instance instead of doing a database query.

	Update: stalker.models.task.TimeLog._validate_resource() is now
falling back to a Python implementation if there is no database connection.

	Update: stalker.models.task.Task._total_logged_seconds_getter() is
now hundreds of times faster when there is a lot of TimeLog instances
attached to the Task.

	Update: In stalker.models.task.Task class, methods those were doing a
database query to get the required Status instances are now using the
attached StatusList instance to get them.

	Fix: A possible auto_flush is prevented in Ticket class.

	Update: Version.latest_version property is now able to fall back to a
pure Python implementation when there is no database connection.

	Update: The default log level has been increased from DEBUG to
INFO.

	Update: In an attempt to speed up tests, a lot of tests that doesn’t need
an active Database has been updated to use the regular unittest.TestCase
instead of stalker.testing.TestBase and as a result running all of the
tests are now 2x faster.

	Fix: TimeLogs are now correctly reflected in UTC in a tj3 file.

	Fix: Fixed a lot of tests which were raising Warnings and surprisingly
considered as Errors in TravisCI.

	Fix: to_tjp methods of SOM classes that is printing a Datetime object
are now printing the dates in UTC.

	Fix: Fixed stalker.models.auth.Permission to be hashable for Python
3.

	Fix: Fixed stalker.models.auth.AuthenticationLog to be sortable for
Python 3.

	Fix: Fixed stalker.models.version.Version.latest_version property for
Python 3.

	Fix: Fixed tests of Permission class to check for correct exception
messages in Python 3.

	Update: Replaced the assertEquals and assertNotEquals calls which
are deprecated in Python 3 with assertEqual and assertNotEquals calls
respectively.

	Fix: Fixed tests for User and Version classes to not to cause the
id column is None warnings of SQLAlchemy to be emitted.

0.2.18

	Update: Support for DB backends other than Postgresql has been dropped.
This is done to greatly benefit from a code that is highly optimized only
for one DB backend. With This all of the tests should be inherited from the
stalker.tests.UnitTestDBBase class.

	New: All the DateTime fields in Stalker are now TimeZone aware and
Stalker stores the DateTime values in UTC. Naive datetime values are not
supported anymore. You should use a library like pytz to supply timezone
information as shown below:

import datetime
import pytz
from stalker import db, SimpleEntity
new_simple_entity = SimpleEntity(
 name='New Simple Entity',
 date_created = datetime.datetime.now(tzinfo=pytz.utc)
)

	Fix: The default values for date_created and date_updated has now
been properly set to a partial function that returns the current time.

	Fix: Previously it was possible to enter two TimeLogs for the same
resource in the same datetime range by committing the data from two different
sessions simultaneously. Thus the database was not aware that it should
prevent that. Now with the new PostgreSQL only implementation and the
ExcludeConstraint of PostgreSQL an IntegrityError is raised by the
database backend when something like that happens.

	Update: All the tests those are checking the system against an Exception
is being raised or not are now checking also the exception message.

	Update: In the TimeLog class, the raised OverBookedException
message has now been made clear by adding the start and end date values of
the clashing TimeLog instance.

	Update: Removed the unnecessary computed_start and computed_end
columns from Task class, which are already defined in the
DateRangeMixin which is a super for the Task class.

0.2.17.6

	Fix: Fixed a bug in ProjectMixin where a proper cascade was not
defined and the Delete operations to the Projects table were not
cascaded to the mixed-in classes properly.

0.2.17.5

	Fix: Fixed the image_format attribute implementation in Shot
class. Now it will not copy the value of Project.image_format directly on
__init__ but instead will only store the value if the image_format
argument in __init__ or Shot.image_format attribute is set to
something.

0.2.17.4

	Update: Updated the comment sections of all of the source files to
correctly show that Stalker is LGPL v3 (not v2.1).

0.2.17.3

	New: Added Shot.fps attribute to hold the fps information per shot.

	Update: Added the necessary alembic revision to reflect the changes in
the Version_Inputs table.

0.2.17.2

	Fix: Fixed Version_Inputs table to correctly take care of
DELETE``s on the ``Versions table. So now it is possible to delete a
Version instance without first cleaning the Link instances that is
related to that Version instance.

	Update: Changed the id attribute name from info_id to log_id
in AuthenticationLog class.

	Update: Started moving towards PostgreSQL only implementation. Merged the
DatabaseModelTester class and DatabaseModelsPostgreSQLTester class.

	Fix: Fixed an autoflush issue in
stalker.models.review.Review.finalize_review_set().

0.2.17.1

	Fix: Fixed alembic revision

0.2.17

	New: Added AuthenticationLog class to hold user login/logout info.

	New: Added stalker.testing module to simplify testing setup.

0.2.16.4

	Fix: Fixed alembic revision.

0.2.16.3

	New: ProjectUser now also holds a new field called rate. The
default value is equal to the ProjectUser.user.rate. It is a way to hold
the rate of a user on a specific project.

	New: Added the Invoice class.

	New: Added the Payment class.

	New: Added two simple mixins AmountMixin and UnitMixin.

	Update: Good class is now mixed in with the new UnitMixin class.

	Update: BudgetEntry class is now mixed in with the new
AmountMixin and UnitMixin classes.

0.2.16.2

	New: Group permissions can now be set on __init__() with the
permissions argument.

0.2.16.1

	Fix: As usual after a new release that changes database schema, fixed the
corresponding Alembic revision (92257ba439e1).

0.2.16

	New: Budget instances are now statusable.

	Update: Updated documentation to include database migration instructions
with Alembic.

0.2.15.2

	Fix: Fixed a typo in the error message in
User._validate_email_format() method.

	Fix: Fixed a query-invoked auto-flush problem in
Task.update_parent_statuses() method.

0.2.15.1

	Fix: Fixed alembic revision (f2005d1fbadc), it will now drop any existing
constraints before re-creating them. And the downgrade function will not
remove the constraints.

0.2.15

	New: db.setup() now checks for alembic_version before setting up
a connection to the database and raises a ValueError if the database
alembic version is not matching the current implementation of Stalker.

	Fix: db.init() sets the created_by and updated_by
attributes to admin user if there is one while creating entity statuses.

	New: Created create_sdist.cmd and upload_to_pypi.cmd for Windows.

	New: Project to Client relation is now a many-to-many relation,
thus it is possible to set multiple Clients for each project with each client
having their own roles in a specific project.

	Update: ScheduleMixin.schedule_timing attribute is now Nullable.

	Update: ScheduleMixin.schedule_unit attribute is now Nullable.

0.2.14

	Fix: Fixed Task.path to always return a path with forward slashes.

	New: Introducing EntityGroups that lets one to group a bunch of

``SimpleEntity``s together, it can be used in grouping tasks even if they are
in different places on the project task hierarchy or even in different
projects.

	Update: Task.percent_complete is now correctly calculated for a
Duration based task by using the Task.start and Task.end
attribute values.

	Fix: Fixed stalker.models.task.update_time_log_task_parents_for_end()
event to work with SQLAlchemy v1.0.

	New: Added an option called __dag_cascade__ to the DAGMixin to
control cascades on mixed in class. The default value is “all, delete”.
Change it to “save-update, merge” if you don’t want the children also be
deleted when the parent is deleted.

	Fix: Fixed a bug in Version class that occurs when a version instance
that is a parent of other version instances is deleted, the child versions
are also deleted (fixed through DAGMixin class).

0.2.13.3

	Fix: Fixed a bug in Review.finalize_review_set() for tasks that are
sent to review and still have some extra time were not clamped to their total
logged seconds when the review set is all approved.

0.2.13.2

	New: Removed msrp, cost and unit arguments from
BudgetEntry.__init__() and added a new good argument to get all of
the data from the related Good instance. But the msrp, cost and
unit attributes of BudgetEntry class are still there to store the
values that may not correlate with the related Good in future.

0.2.13.1

	Fix: Fixed a bug in Review.finalize_review_set() which causes Task
instances to not to get any status update if the revised task is a second
degree dependee to that particular task.

0.2.13

	New: Project instances can now have multiple repositories. Thus the
repository attribute is renamed to repositories. And the order of the
items in the repositories attribute is restored correctly.

	New: stalker.db.init() now automatically creates environment
variables for each repository in the database.

	New: Added a new after_insert which listens Repository instance
``insert``s to automatically add environment variables for the newly inserted
repositories.

	Update: Repository.make_relative() now handles paths with environment
variables.

	Fix: Fixed TaskJugglerScheduler to correctly generate task absolute
paths for PostgreSQL DB.

	New: Repository.path is now writable and sets the correct path
(linux_path, windows_path, or osx_path) according to the current
system.

	New: Setting either of the Repository.path,
Repository.linux_path, Repository.windows_path,
Repository.osx_path attributes will update the related environment
variable if the system and attribute are matching to each other, setting the
linux_path on Linux or setting the windows_path on Windows or setting
the osx_path on OSX will update the environment variable.

	New: Added Task.good attribute to easily connect tasks to ``Good``s.

	New: Added new methods to Repository to help managing paths:

	Repository.find_repo() to find a repo from a given path. This is a
class method so it can be directly used with the Repository class.

	Repository.to_os_independent_path() to convert the given path to a OS
independent path which uses environment variables. Again this is a class
method too so it can be directly used with the Repository class.

	Repository.env_var a new property that returns the related environment
variable name of a repo instance. This is an instance property:

with default settings

repo = Repository(…)
repo.env_var # should print something like “REPO131” which will be used

in paths as “$REPO131”

	Fix: Fixed User.company_role attribute which is a relationship to
the ClienUser to cascade all, delete-orphan to prevent
AssertionErrors when a Client instance is removed from the User.companies
collection.

0.2.12.1

	Update: Version class is now mixed with the DAGMixin, so all the
parent/child relation is coming from the DAGMixin.

	Update: DAGMixin.walk_hierarchy() is updated to walk the hierarchy in
Depth First mode by default (method=0) instead of Breadth First mode
(method=1).

	Fix: Fixed alembic_revision on database initialization.

0.2.12

	Fix: Fixed importing of ProjectUser directly from stalker
namespace.

	Fix: Fixed importing of ClientUser directly from stalker
namespace.

	New: Added two new columns to the BudgetEntry class to allow more
detailed info to be hold.

	New: Added a new Mixin called DAGMixin to create parent/child
relation between mixed in class.

	Update: The Task class is now mixed with the DAGMixin, so all the
parent/child relation is coming from the DAGMixin.

	New: Added a new class called Good to hold details about the
commercial items/services sold in the Studio.

	New: Added a new class called PriceList to create price lists from
Goods.

0.2.11

	New: User instances now have a new attribute called rate to track
their cost as a resource.

	New: Added two new classes called Budget and BudgetEntry to
record Project budgets in a simple way.

	New: Added a new class called Role to manage user roles in different
Departments, Clients and Projects.

	New: User and Department relation is updated to include the role of the
user in that department in a more flexible way by using the newly introduced
Role class and some association proxy tricks.

	New: Also updated the User to Project relation to include the role of the
user in that Project by using an associated Role class.

	Update: Department.members attribute is renamed to users (and removed
the synonym property).

	Update: Removed Project.lead attribute use Role instead.

	Update: Removed Department.lead attribute use Role instead.

	Update: Because the Project.lead attribute is removed, it is now
possible to have tasks with no responsible.

	Update: Client to User relation is updated to use an association proxy
which makes it possible to set a Role for each User for each Client it is
assigned to.

	Update: Renamed User.company to User.companies as the relation is now
able to handle more than one Client instances for the User company.

	Update: Task Status Workflow has been updated to convert the status of a
DREV task to HREV instead of WIP when the dependent tasks has been set to
CMPL. Also the timing of the task is expanded by the value of
stalker.defaults.timing_resolution if it doesn’t have any effort left
(generally true for CMPL tasks) to allow the resource to review and decide if
he/she needs more time to do any update on the task and also give a chance of
setting the Task status to WIP by creating a time log.

	New: It is now possible to schedule only a desired set of projects by
passing a projects argument to the TaskJugglerScheduler.

	New: Task.request_review() and Review.finalize() will not cap the timing
of the task until it is approved and also Review.finalize() will extend the
timing of the task if the total timing of the given revisions are not fitting
in to the left timing.

0.2.10.5

	Update: TaskJuggler output is now written to debug output once per line.

0.2.10.4

	New: ‘@’ character is now allowed in Entity nice name.

0.2.10.3

	New: ‘@’ character is now allowed in Version take names.

0.2.10.2

	Fix: Fixed a bug in
stalker.models.schedulers.TaskJugglerScheduler._create_tjp_file_content()
caused by non-ascii task names.

	Fix: Removed the residual RootFactory class reference from
documentation.

	New: Added to new functions called utc_to_local and local_to_utc
for UTC to Local time and vice versa conversion.

0.2.10.1

	Fix: Fixed a bug where for a WIP Task with no time logs (apparently
something went wrong) and no dependencies using
Task.update_status_with_dependent_statuses() will convert the status to
RTS.

0.2.10

	New: It is now possible to track the Edit information per Shot using the
newly introduced source_in, source_out and record_in along with
existent cut_in and cut_out attributes.

0.2.9.2

	Fix: Fixed MySQL initialization problem in stalker.db.init().

0.2.9.1

	New: As usual, after a new release, fixed a bug in
stalker.db.create_entity_statuses() caused by the behavioral change of
the map built-in function in Python 3.

0.2.9

	New: Added a new class called Daily which will help managing
Version outputs (Link instances including Versions itself) as a group.

	New: Added a new status list for Daily class which contains two
statuses called “Open” and “Closed”.

	Update: Setting the Version.take_name to a value other than a string
will now raise a TypeError.

0.2.8.4

	Fix: Fixed SimpleEntity._validate_name() method for unicode strings.

0.2.8.3

	Fix: Fixed str/unicode errors due to the code written for Python3
compatibility.

	Update: Removed Task.is_complete attribute. Use the status “CMPL”
instead of this attribute.

0.2.8.2

	Fix: Fixed stalker.db.create_alembic_table() again to prevent extra
row insertion.

0.2.8.1.1

	Fix: Fixed stalker.db.create_alembic_table() function to handle the
situation where the table is already created.

0.2.8.1

	Fix: Fixed stalker.db.create_alembic_table() function, it is not
using the alembic library anymore to create the alembic_version
table, which was the proper way of doing it but it created a lot of problems
when Stalker is installed as a package.

0.2.8

	Update: Stalker is now Python3 compatible.

	New: Added a new class called Client which can be used to track down
information about the clients of Projects. Also added Project.client
and User.company attributes which are referencing a Client instance
allowing to add clients as normal users.

	New: db.init() now creates alembic_version table and stamps the
most recent version number to that table allowing newly initialized databases
to be considered in head revision.

	Fix: Fixed Version._format_take_name() method. It is now possible to
use multiple underscore characters in Version.take_name attribute.

0.2.7.6

	Update: Removed TimeLog._expand_task_schedule_timing() method which
was automatically adjusting the schedule_timing and schedule_unit of
a Task to total duration of the TimeLogs of that particular task, thus
increasing the schedule info with the entered time logs.

But it was setting the schedule_timing to 0 in some certain cases and it
was unnecessary because the main purpose of this method was to prevent
TaskJuggler to raise any errors related to the inconsistencies between the
schedule values and the duration of TimeLogs and TaskJuggler has never given
a real error about that situation.

0.2.7.5

	Fix: Fixed Task parent/child relationship, previously setting the parent
of a task to None was cascading a delete operation due to the
“all, delete-orphan” setting of the Task parent/child relationship, this is
updated to be “all, delete” and it is now safe to set the parent to None
without causing the task to be deleted.

0.2.7.4

	Fix: Fixed the following columns column type from String to Text:

	Permissions.class_name

	SimpleEntities.description

	Links.full_path

	Structures.custom_template

	FilenameTemplates.path

	FilenameTemplates.filename

	Tickets.summary

	Wiki.title

	Wiki.content

and specified a size for the following columns:

	SimpleEntities.html_class -> String(32)

	SimpleEntities.html_style -> String(32)

	FilenameTemplates.target_entity_type -> String(32)

to be compatible with MySQL.

	Update: It is now possible to create TimeLog instances for a Task with
PREV status.

0.2.7.3

	Fix: Fixed Task.update_status_with_dependent_statuses() method for a
Task where there is no dependency but the status is DREV. Now calling
Task.update_status_with_dependent_statuses() will set the status to RTS
if there is no TimeLog for that task and will set the status to WIP if
the task has time logs.

0.2.7.2

	Update: TaskJugglerScheduler is now 466x faster when dumping all the
data to TJP file. So with this new update it is taking only 1.5 seconds to
dump ~20k tasks to a valid TJP file where it was around ~10 minutes in
previous implementation. The speed enhancements is available only to
PostgreSQL dialect for now.

0.2.7.1

	Fix: Fixed TimeLog output in one line per task in Task.to_tjp().

	New: Added TaskJugglerScheduler now accepts a new argument called
compute_resources which when set to True will also consider
Task.alternative_resources attribute and will fill
Task.computed_resources attribute for each Task. With
TaskJugglerScheduler when the total number of Task is around 15k it will
take around 7 minutes to generate this data, so by default it is set to
False.

0.2.7

	New: Added efficiency attribute to User class. See User
documentation for more info.

0.2.6.14

	Fix: Fixed an autoflush problem in Studio.schedule() method.

0.2.6.13

	New: Added Repository.make_relative() method, which makes the given
path to relative to the repository root. It considers that the path is
already in the repository. So for now, be careful about not to pass a path
outside of the repository.

0.2.6.12

	Update: TaskJugglerScheduler.schedule() method now uses the
Studio.start and Studio.end values for the scheduling range instead
of the hardcoded dates.

0.2.6.11

	Update: Task.create_time_log() method now returns the created
TimeLog instance.

0.2.6.10

	Fix: Fixed an autoflush issue in
Task.update_status_with_children_statuses() method.

0.2.6.9

	Update: Studio.is_scheduling and Studio.is_scheduling_by
attributes will not be updated or checked at the beginning of the
Studio.schedule() method. It is the duty of the user to check those
attributes before calling Studio.schedule(). This is done in this way
because without being able to do a db commit inside Studio.schedule()
method (which is the case with transaction managers which may be used in web
applications like Stalker Pyramid) it is not possible to persist and thus
use those variables. So, to be able to use those attributes meaningfully the
user should set them. Those variables will be set to False and None
accordingly by the Studio.schedule() method after the scheduling is done.

0.2.6.8

	Fix: Fixed a deadlock in TaskJugglerScheduler.schedule() method
related with the Popen.stderr.readlines() blocking the TaskJuggler
process without being able to read the output buffer.

0.2.6.7

	Update: TaskJugglerScheduler.schedule() is now using bulk inserts and
updates which is way faster than doing it with pure Python. Use
parsing_method (0: SQL, 1: Python) to choose between SQL or Pure Python
implementation. Also updated Studio.schedule() to take in a
parsing_method parameter.

0.2.6.6

	Update: The cut_in, cut_out and cut_duration attribute
behaviour and the attribute order is updated in Shot class. So, if three
of the values are given, then the cut_duration attribute value will be
calculated from cut_in and cut_out attribute values. In any case
cut_out precedes cut_duration, and if none of them given cut_in
and cut_duration values will default to 1 and cut_out will be
calculated by using cut_in and cut_duration.

0.2.6.5

	New: Entity to Note relation is now Many-to-Many. So one Note can now be
assigned more than one Entity.

	New: Added alembic revision for Entity_Notes table creation and data
migration from Notes table to Entity_Notes table. So all notes are
preserved.

	Fix: Fixed Shot.cut_duration attribute initialization on Shot
instances restored from database.

	Fix: Fixed Studios.is_scheduling_by relationship configuration, which
was wrongly referencing the Studios.last_scheduled_by_id column instead
of Studios.is_scheduled_by_id column.

0.2.6.4

	New: Added a Task.review_set(review_number) method to get the desired
set of reviews. It will return the latest set of reviews if review_number
is skipped or it is None.

	Update: Removed Task.approve() it was making things complex than it
should be.

0.2.6.3

	Fix: Added Page to class_names in db.init().

	Fix: Fixed TimeLog tjp representation to use bot the start and
end date values instead of the start and duration. This is much
better because it is independent from the timing resolution settings.

0.2.6.2

	Fix: Fixed stalker.models.studio.schedule() method, and prevented it
to call DBSession.commit() which causes errors if there is a transaction
manager.

	Fix: Fixed stalker.models._parse_csv_file() method for empty
computed resources list.

0.2.6.1

	New: stalker.models.task.TimeLog instances are now checking if the
dependency relation between the task that receives the time log and the tasks
that the task depends to will be violated in terms of the start and end dates
and raises a DependencyViolationError if it is the case.

0.2.6

	New: Added stalker.models.wiki.Page class, for holding a per Project
wiki.

0.2.5.5

	Fix: Review.task attribute now accepts None but this is mainly done
to allow its relation to the Task instance can be broken when it needs to
be deleted without issuing a database commit.

0.2.5.4

	Update: The following column names are updated:

	Tasks._review_number to Tasks.review_number

	Tasks._schedule_seconds to Tasks.schedule_seconds

	Tasks._total_logged_seconds to Tasks.total_logged_seconds

	Reviews._review_number to Reviews.review_number

	Shots._cut_in to Shots.cut_in

	Shots._cut_out to Shots.cut_out

Also updated alembic migration to create columns with those names.

	Update: Updated Alembic revision 433d9caaafab (the one related with
stalker 2.5 update) to also include following updates:

	Create StatusLists for Tasks, Asset, Shot and Sequences and add all the
Statuses in the Task Status Workflow.

	Remove NEW from all of the status lists of Task, Asset, Shot and
Sequence.

	Update all the PREV tasks to WIP to let them use the new Review
Workflow.

	Update the Tasks.review_number to 0 for all tasks.

	Create StatusLists and Statuses (NEW, RREV, APP) for Reviews.

	Remove any other status then defined in the Task Status Workflow from Task,
Asset, Shot and Sequence status list.

0.2.5.3

	Fix: Fixed a bug in Task class where trying to remove the
dependencies will raise an AttributeError caused by the
Task._previously_removed_dependent_tasks attribute.

0.2.5.2

	New: Task instances now have two new properties called path and
absolute_path. As in Version instances, these are the rendered version
of the related FilenameTemplate object in the related Project. The path
attribute is Repository root relative and absolute_path is the absolute
path including the OS dependent Repository path.

	Update: Updated alembic revision with revision number “433d9caaafab” to
also create Statuses introduced with Stalker v0.2.5.

0.2.5.1

	Update: Version.__repr__ results with a more readable string.

	New: Added a generalized generator called
stalker.models.walk_hierarchy() that walks and yields the entities over
the given attribute in DFS or BFS fashion.

	New: Added Task.walk_hierarchy() which iterates over the hierarchy of
the task. It walks in a breadth first fashion. Use method=0 to walk in
depth first.

	New: Added Task.walk_dependencies() which iterates over the
dependencies of the task. It walks in a breadth first fashion. Use
method=0 to walk in depth first.

	New: Added Version.walk_hierarchy() which iterates over the hierarchy
of the version. It walks in a depth first fashion. Use method=1 to walk
in breadth first.

	New: Added Version.walk_inputs() which iterates over the inputs of
the version. It walks in a depth first fashion. Use method=1 to walk in
breath first.

	Update: stalker.models.check_circular_dependency() function is now
using stalker.models.walk_hierarchy() instead of recursion over itself,
which makes it more robust in deep hierarchies.

	Fix: db.init() now updates the statuses of already created status
lists for Task, Asset, Shot and Sequence classes.

0.2.5

	Update: Revision class is renamed to Review and introduced a
couple of new attributes.

	New: Added a new workflow called “Task Review Workflow”. Please see the
documentation about the new workflow.

	Update: Task.responsible attribute is now a list which allows
multiple responsible to be set for a Task.

	New: Because of the new “Task Review Workflow” task statuses which are
normally created in Stalker Pyramid are now automatically created in Stalker
database initialization. The new statuses are
Waiting For Dependency (WFD), Ready To Start (RTS),
Work In Progress (WIP), Pending Review (PREV),
Has Revision (HREV), On Hold (OH), Stopped (STOP) and
Completed (CMPL) are all used in Task, Asset, Shot and
Sequence status lists by default.

	New: Because of the new “Task Review Workflow” also a status list for
Review class is created by default. It contains the statuses of
New (NEW), Requested Revision (RREV) and Approved (APP).

	Fix: Users.login column is now unique.

	Update: Ticket workflow in config is now using the proper status names
instead of the lower case names of the statuses.

	New: Added a new exception called StatusError which states the entity
status is not suitable for the action it is applied to.

	New: Studio instance now stores the scheduling state to the database
to prevent two scheduling process to override each other. It also stores the
last schedule message and the last schedule date and the id of the user who
has done the scheduling.

	New: The Task Dependency relation is now using an
Association Object instead of just a Secondary Table. The
Task.depends and Task.dependent_of attributes are now
association_proxies.

Also added extra parameters like dependency_target, gap_timing,
gap_unit and gap_model to the dependency relation. So all of the
dependency relations are now able to hold those extra information.

Updated the task_tjp_template to reflect the details of the dependencies
that a task has.

	New: ScheduleMixin class now has some default class attributes that
will allow customizations in inherited classes. This is mainly done for
TaskDependency class and for the gap_timing, gap_unit,
gap_model attributes which are in fact synonyms of schedule_timing,
schedule_unit and schedule_model attributes coming from the
ScheduleMixin class. So by using the __default_schedule_attr_name__
Stalker is able to display error messages complaining about gap_timing
attribute instead of schedule_timing etc.

	New: Updating a task by calling Task.request_revision() will now set
the TaskDependency.dependency_target to ‘onstart’ for tasks those are
depending to the revised task and updated to have a status of DREV,
OH or STOP. Thus, TaskJuggler will be able to continue scheduling
these tasks even if the tasks are now working together.

	Update: Updated the TaskJuggler templates to make the tjp output a little
bit more readable.

	New: ScheduleMixin now creates more localized (to the mixed in class)
column and enum type names in the mixed in classes.

For example, it creates the TaskScheduleModel enum type for Task
class and for TaskDependency it creates TaskDependencyGapModel with
the same setup following the {{class_name}}{{attr_name}}Model template.

Also it creates schedule_model column for Task, and gap_model for
TaskDependency class.

	Update: Renamed the TaskScheduleUnit enum type name to TimeUnit
in ScheduleMixin.

0.2.4

	New: Added new class called Revision to hold info about Task
revisions.

	Update: Renamed ScheduleMixin to DateRangeMixin.

	New: Added a new mixin called ScheduleMixin (replacing the old one)
which adds attributes like schedule_timing, schedule_unit,
schedule_model and schedule_constraint.

	New: Added Task.tickets and Task.open_tickets properties.

	Update: Removed unnecessary arguments (project_lead, tasks,
watching, last_login) from User class.

	Update: The timing_resolution attribute is moved from the
DateRangeMixin to Studio class. So instances of classes like
Project or Task will not have their own timing resolution anymore.

	New: The Studio instance now overrides the values on
stalker.defaults on creation and on load, and also the db.setup()
function lets the first Studio instance that it finds to update the
defaults. So it is now possible to use stalker.defaults all the time
without worrying about the Studio settings.

	Update: The Studio.yearly_working_days value is now always an
integer.

	New: Added a new method ScheduleMixin.least_meaningful_time_unit() to
calculate the most appropriate timing unit and the value of the given seconds
which represents an interval of time.

So it will convert 3600 seconds to 1 hours, and 8424000 seconds to 1 years if
it represents working time (as_working_time=True) or 2340 hours if it is
representing the calendar time.

	New: Added a new method to ScheduleMixin called to_seconds(). The
to_seconds() method converts the given schedule info values
(schedule_timing, schedule_unit, schedule_model) to seconds
considering if the given schedule_model is work time based (‘effort’ or
‘length’) or calendar time based (‘duration’).

	New: Added a new method to ScheduleMixin called schedule_seconds
which you may recognise from Task class. What it does is pretty much the
same as in the Task class, it converts the given schedule info values to
seconds.

	Update: In DateRangeMixin, when the start, end or
duration arguments given so that the duration is smaller then the
defaults.timing_resolution the defaults.timing_resolution will be
used as the duration and the end will be recalculated by anchoring
the start value.

	New: Adding a TimeLog to a Task and extending its schedule info
values now will always use the least meaningful timing unit. So expanding a
task from 16 hours to 18 hours will result a task with 2 days of schedule
(considering the daily_working_hours = 9).

	Update: Moved the daily_working_hours attribute from Studio class
to WorkingHours class as it was much related to this one then Studio
class. Left a property with the same name in the Studio class, so it will
still function as it was before but there will be no column in the database
for that attribute anymore.

0.2.3.5

	Fix: Fixed a bug in stalker.models.auth.LocalSession where stalker
was complaining about “copy_reg” module, it seems that it is related to
this bug [http://www.archivum.info/python-bugs-list@python.org/2007-04/msg00222.html].

0.2.3.4

	Update: Fixed a little bug in Link.extension property setter.

	New: Moved the stalker.models.env.EnvironmentBase class to
“Anima Tools” python module.

	Fix: Fixed a bug in stalker.models.task.Task._responsible_getter() where
it was always returning the greatest parents responsible as the responsible
for the child task when the responsible is set to None for the child.

	New: Added stalker.models.version.Version.naming_parents which
returns a list of parents starting from the closest parent Asset, Shot or
Sequence.

	New: stalker.models.version.Version.nice_name now generates a name
starting from the closest Asset, Shot or Sequence parent.

0.2.3.3

	New: Ticket action methods (resolve, accept, reassign,
reopen) now return the created TicketLog instance.

0.2.3.2

	Update: Added tests for negative or zero fps value in Project class.

	Fix: Minor fix to schedule_timing argument in Task class, where IDEs
where assuming that the value passed to the schedule_timing should be
integer where as it accepts floats also.

	Update: Removed bg_color and fg_color attributes (and columns)
from Status class. Use SimpleEntity.html_class and SimpleEntity.html_style
attributes instead.

	New: Added Project.open_tickets property.

0.2.3.1

	Fix: Fixed an inconvenience in SimpleEntity.__init__() when a
date_created argument with a value is later than datetime.datetime.now() is
supplied and the date_updated argument is skipped or given as None, then the
date_updated attribute value was generated from datetime.datetime.now() this
was causing an unnecessary ValueError. This is fixed by directly copying the
date_created value to date_updated value when it is skipped or None.

0.2.3

	New: SimpleEntity now have two new attributes called html_style and
html_class which can be used in storing cosmetic html values.

0.2.2.3

	Update: Note.content attribute is now a synonym of the Note.description
attribute.

0.2.2.2

	Update: Studio.schedule() now returns information about how much did it
take to schedule the tasks.

	Update: Studio.to_tjp() now returns information about how much did it
take to complete the conversion.

0.2.2.1

	Fix: Task.percent_complete() now calculates the percent complete
correctly.

0.2.2

	Update: Added cascade attributes to all necessary relations for all the
classes.

	Update: The Version class is not mixed with the StatusMixin anymore. So
the versions are not going to be statusable anymore. Also created alembic
revision (a6598cde6b) for that update.

0.2.1.2

	Update: TaskJugglerScheduler and the Studio classes are now returning the
stderr message out of their schedule() methods.

0.2.1.1

	Fix: Disabled some deep debug messages on
TaskJugglerScheduler._parse_csv_file().

	Fix: Fixed a flush issue related to the Task.parent attribute which is
lazily loaded in Task._schedule_seconds_setter().

0.2.1

	Fix: As usual distutil thinks 0.2.0 is a lower version number than
0.2.0.rc5 (I should have read the documentation again and used
0.2.0.c5 instead of 0.2.0.rc5) so this is a dummy update to just to
fix the version number.

0.2.0

	Update: Vacation tjp template now includes the time values of the start
and end dates of the Vacation instance.

0.2.0.rc5

	Update: For a container task, Task.total_logged_seconds and
Task.schedule_seconds attributes are now using the info of the child
tasks. Also these attributes are cached to database, so instead of querying
the child tasks all the time, the calculated data is cached and whenever a
TimeLog is created or updated for a child task (which changes the
total_logged_seconds for the child task) or the schedule_timing or
schedule_unit attributes are updated, the cached values are updated on
the parents. Allowing Stalker to display percent_complete info of a container
task without loading any of its children.

	New: Added Task.percent_complete attribute, which calculates the
percent of completeness of the task based on the
Task.total_logged_seconds and Task.schedule_seconds attributes.

	Fix: Added TimeLog.__eq__() operator to more robustly check if the
time logs are overlapping.

	New: Added Project.percent_complete,
Percent.total_logged_seconds and Project.schedule_seconds attributes.

	Update: ScheduleMixin._validate_dates() does not set the date values
anymore, it just return the calculated and validated start, end and
duration values.

	Update: Vacation now can be created without a User instance,
effectively making the Vacation a Studio wide vacation, which applies
to all users.

	Update: Vacation.__strictly_typed__ is updated to False, so there
is no need to create a Type instance to be able to create a Vacation.

	New: Studio.vacations property now returns the Vacation instances
which has no user.

	Update: Task.start and Task.end values are no more read from
children Tasks for a container task over and over again but calculated
whenever the start and end values of a child task are changed or a new child
is appended or removed.

	Update: SimpleEntity.description validation routine doesn’t convert
the input to string anymore, but checks the given description value against
being a string or unicode instance.

	New: Added Ticket.summary field.

	Fix: Fixed Link.extension, it is now accepting unicode.

0.2.0.rc4

	New: Added a new attribute to Version class called
latest_version which holds the latest version in the version queue.

	New: To optimize the database connection times, stalker.db.setup()
will not try to initialize the database every time it is called anymore. This
leads a ~4x speed up in database connection setup. To initialize a newly
created database please use:

for a newly created database
from stalker import db
db.setup() # connects to database
db.init() # fills some default values to be used with Stalker

for any subsequent access just use (don't need to call db.init())
db.setup()

	Update: Removed all __init_on_load() methods from all of the classes.
It was causing SQLAlchemy to eagerly load relations, thus slowing down
queries in certain cases (especially in Task.parent -> Task.children
relation).

	Fix: Fixed Vacation class tj3 format.

	Fix: Studio.now attribute was not properly working when the
Studio instance has been restored from database.

0.2.0.rc3

	New: Added a new attribute to Task class called responsible.

	Update: Removed Sequence.lead_id use Task.reponsible instead.

	Update: Updated documentation to include documentation about
Configuring Stalker with config.py.

	Update: The duration argument in Task class is removed. It is
somehow against the idea of having schedule_model and schedule_timing
arguments (schedule_model='duration' is kind of the same).

	Update: Updated Task class documentation.

0.2.0.rc2

	New: Added Version.created_with attribute to track the environment or
host program name that a particular Version instance is created with.

0.2.0.rc1

	Update: Moved the Pyramid part of the system to another package called
stalker_pyramid.

	Fix: Fixed setup.py where importing stalker to get the
__version__ variable causing problems.

0.2.0.b9

	New: Added Version.latest_published_version and
Version.is_latest_published_version().

	Fix: Fixed Version.__eq__(), now Stalker correctly distinguishes
different Version instances.

	New: Added Repository.to_linux_path(),
Repository.to_windows_path(), Repository.to_osx_path() and
Repository.to_native_path() to the Repository class.

	New: Added Repository.is_in_repo(path) which checks if the given
path is in this repo.

0.2.0.b8

	Update: Renamed Version.version_of attribute to Version.task.

	Fix: Fixed Version.version_number where it was not possible to have
a version number bigger than 2.

	Fix: In db.setup() Ticket statuses are only created if there aren’t
any.

	Fix: Added Vacation class to the registered class list in
stalker.db.

0.2.0.b7

	Update: Task.schedule_constraint is now reflected to the tjp file
correctly.

	Fix: check_circular_dependency() now checks if the entity and
the other_entity are the same.

	Fix: Task.to_tjp() now correctly add the dependent tasks of a
container task.

	Fix: Task.__eq__() now correctly considers the parent, depends,
resources, start and end dates.

	Update: Task.priority is now reflected in tjp file if it is
different than the default value (500).

	New:: Added a new class called Vacation to hold user vacations.

	Update: Removed dependencies to pyramid.security.Allow and
pyramid.security.Deny in couple of packages.

	Update: Changed the way the stalker.defaults is created.

	Fix: EnvironmentBase.get_version_from_full_path(),
EnvironmentBase.get_versions_from_path(),
EnvironmentBase.trim_repo_path(), EnvironmentBase.find_repo methods
are now working properly.

	Update: Added Version.absolute_full_path property which renders the
absolute full path which also includes the repository path.

	Update: Added Version.absolute_path property which renders the
absolute path which also includes the repository path.

0.2.0.b6

	Fix: Fixed LocalSession._write_data(), previously it was not
creating the local session folder.

	New: Added a new method called LocalSession.delete() to remove the
local session file.

	Update: Link.full_path can now be set to an empty string. This is
updated in this way for Version class.

	Update: Updated the formatting of SimpleEntity.nice_name, it is now
possible to have uppercase letters and camel case format will be preserved.

	Update: Version.take_name formatting is enhanced.

	New: Task class is now mixed in with ReferenceMixin making it
unnecessary to have Asset, Shot and Sequence classes all mixed
in individually. Thus removed the ReferenceMixin from Asset,
Shot and Sequence classes.

	Update: Added Task.schedule_model validation and its tests.

	New: Added ScheduleMixin.total_seconds and
ScheduleMixin.computed_total_seconds.

0.2.0.b5

	New: Version class now has two new attributes called parent and
children which will be used in tracking of the history of Version
instances and track which Versions are derived from which Version.

	New: Versions instances are now derived from Link class and not
Entity.

	Update: Added new revisions to alembic to reflect the change in
Versions table.

	Update: Links.path is renamed to Links.full_path and added
three new attributes called path, filename and extension.

	Update: Added new revisions to alembic to reflect the change in
Links table.

	New: Added a new class called LocalSession to store session data in
users local filesystem. It is going to be replaced with some other system
like Beaker.

	Fix: Database part of Stalker can now be imported without depending to
Pyramid.

	Fix: Fixed documentation errors that Sphinx complained about.

0.2.0.b4

	No changes in SOM.

0.2.0.b3

	Update: FilenameTemplate’s are not strictly typed anymore.

	Update: Removed the FilenameTemplate type initialization, FilenameTemplates
do not depend on Types anymore.

	Update: Added back the plural_class_name (previously plural_name)
property to the ORMClass class, so all the classes in SOM now have this new
property.

	Update: Added accepts_references attribute to the EntityType class.

	New: The Link class has a new attribute called original_filename to
store the original file names of link files.

	New: Added alembic to the project requirements.

	New: Added alembic migrations which adds the accepts_references column
to EntityTypes table and original_name to the Links table.

0.2.0.b2

	Stalker is now compatible with Python 2.6.

	Task:

	Update: Tasks now have a new attribute called watchers which holds a
list of User instances watching the particular Task.

	Update: Users now have a new attribute called watching which is a
list of Task instances that this user is watching.

	TimeLog:

	Update: TimeLog instances will expand Task.schedule_timing value
automatically if the total amount of logged time is more than the
schedule_timing value.

	Update: TimeLogs are now considered while scheduling the task.

	Fix: TimeLogs raises OverBookedError when appending the same TimeLog
instance to the same resource.

	Auth:

	Fix: The default ACLs for determining the permissions are now working
properly.

0.2.0.b1

	WorkingHours.is_working_hour() is working now.

	WorkingHours class is moved from stalker.models.project to
stalker.models.studio module.

	daily_working_hours attribute is moved from
stalker.models.project.Project to stalker.models.studio.Studio class.

	Repository path variables now ends with a forward slash even if it is not
given.

	Updated Project classes validation messages to correlate with Stalker
standard.

	Implementation of the Studio class is finished. The scheduling works like a
charm.

	It is now possible to use any characters in SimpleEntity.name and the derived
classes.

	Booking class is renamed to TimeLog.

0.2.0.a10

	Added new attribute to WorkingHours class called weekly_working_hours,
which calculates the weekly working hours based on the working hours defined
in the instance.

	Task class now has a new attribute called schedule_timing which is
replacing the effort, length and duration attributes. Together
with the schedule_model attribute it will be used in scheduling the Task.

	Updated the config system to the one used in oyProjectManager (based on
Sphinx config system). Now to reach the defaults:

instead of doing the following
from stalker.conf import defaults # not valid anymore

use this
from stalker import defaults

If the above idiom is used, the old defaults module behaviour is
retained, so no code change is required other than the new lower case config
variable names.

0.2.0.a9

	A new property called to_tjp added to the SimpleEntity class which needs
to be implemented in the child and is going to be used in TaskJuggler
integration.

	A new attribute called is_scheduled added to Task class and it is going
to be used in Gantt charts. Where it will lock the class and will not try
to snap it to anywhere if it is scheduled.

	Changed the resolution attribute name to timing_resolution to comply
with TaskJuggler.

	ScheduleMixin:

	Updated ScheduleMixin class documentation.

	There are two new read-only attributes called computed_start and
computed_end. These attributes will be used in storing of the values
calculated by TaskJuggler, and will be used in Gantt Charts if available.

	Added computed_duration.

	Task:

	Arranged the TaskJuggler workflow.

	The task will use the effort > length > duration attributes in to_tjp
property.

	Changed the license of Stalker from BSD-2 to LGPL 2.1. Any version previous
to 0.2.0.a9 will be still BSD-2 and any version from and including 0.2.0.a9
will be distributed under LGPL 2.1 license.

	Added new types of classes called Schedulers which are going to be used in
scheduling the tasks.

	Added TaskJugglerScheduler, it uses the given project and schedules its
tasks.

0.2.0.a8

	TagSelect now can be filled by setting its value attribute (Ex:
TagSelect.set(‘value’, data))

	Added a new method called is_root to Task class. It is true for tasks
where there are no parents.

	Added a new attribute called users to the Department class which is a
synonym for the members attribute.

	Task:

	Task class is now preventing one of the dependents to be set as the parent
of a task.

	Task class is now preventing one of the parents to be set as the one of the
dependents of a task.

	Fixed autoflush bugs in Task class.

	Fixed admin users department initialization.

	Added thumbnail attribute to the SimpleEntity class which is a reference
to a Link instance, showing the path of the thumbnail.

	Fixed Circular Dependency bug in Task class, where a parent of a newly
created task is depending to another task which is set as the dependee for
this newly created task (T1 -> T3 -> T2 -> T1 (parent relation) -> T3 -> T2
etc.).

0.2.0.a7

	Changed these default setting value names to corresponding new names:

	DEFAULT_TASK_DURATION -> TASK_DURATION

	DEFAULT_TASK_PRIORITY -> TASK_PRIORITY

	DEFAULT_VERSION_TAKE_NAME -> VERSION_TAKE_NAME

	DEFAULT_TICKET_LABEL -> TICKET_LABEL

	DEFAULT_ACTIONS -> ACTIONS

	DEFAULT_BG_COLOR -> BG_COLOR

	DEFAULT_FG_COLOR -> FG_COLOR

	stalker.conf.defaults:

	Added default settings for project working hours (WORKING_HOURS,
DAY_ORDER, DAILY_WORKING_HOURS)

	Added a new variable for setting the task time resolution called
TIME_RESOLUTION.

	stalker.models.project.Project:

	Removed Project.project_tasks attribute, use Project.tasks directly to get
all the Tasks in that project. For root task you can do a quick query:

Task.query.filter(Task.project==proj_id).filter(Task.parent==None).all()

This will also return the Assets, Sequences and Shots in that project,
which are also Tasks.

	Users are now assigned to Projects by appending them to the Project.users
list. This is done in this way to allow a reduced list of resources to be
shown in the Task creation dialogs.

	Added a new helper class for Project working hour management, called
WorkingHours.

	Added a new attribute to Project class called working_hours which holds
stalker.models.project.WorkingHours instances to manage the Project working
hours. It will directly be passed to TaskJuggler.

	stalker.models.task.Task:

	Removed the Task.task_of attribute, use Task.parent to get the owner of
this Task.

	Task now has two new attributes called Task.parent and Task.children which
allow more complex Task-to-Task relation.

	Secondary table name for holding Task to Task dependency relation is
renamed from Task_Tasks to Task_Dependencies.

	check_circular_dependency function is now accepting a third argument which
is the name of the attribute to be investigated for circular relationship.
It is done in that way to be able to use the same function in searching for
circular relations both in parent/child and depender/dependee relations.

	ScheduleMixin:

	Added a new attribute to ScheduleMixin for time resolution adjustment.
Default value is 1 hour and can be set with
stalker.conf.defaults.TIME_RESOLUTION. Any finer time than the resolution
is rounded to the closest multiply of the resolution. It is possible to set
it from microseconds to years. Although 1 hour is a very reasonable
resolution which is also the default resolution for TaskJuggler.

	ScheduleMixin now uses datetime.datetime for the start and end attributes.

	Renamed the start_date attribute to start.

	Renamed the end_date attribute to end

	Removed the TaskableEntity.

	Asset, Sequence and Shot classes are now derived from Task class allowing
more complex Task relation combined with the new parent/child relation of
Tasks. Use Asset.children or Asset.tasks to reach the child tasks of that
asset (same with Sequence and Shot classes).

	stalker.models.shot.Shot:

	Removed the sequence and introduced sequences attribute in Shot class. Now
one shot can be in more than one Sequence. Allowing more complex
Shot/Sequence relations..

	Shots can now be created without a Sequence instance. The sequence
attribute is just used to group the Shots.

	Shots now have a new attribute called scenes, holding Scene instances.
It is created to group same shots occurring in the same scenes.

	In tests all the Warnings are now properly handled as Warnings.

	stalker.models.ticket.Ticket:

	Ticket instances are now tied to Projects and it is now possible to create
Tickets without supplying a Version. They are free now.

	It is now possible to link any SimpleEntity to a Ticket.

	The Ticket Workflow is now fully customizable. Use
stalker.conf.defaults.TICKET_WORKFLOW dictionary to define the workflow and
stalker.conf.defaults.TICKET_STATUS_ORDER for the order of the ticket
statuses.

	Added a new class called Scene to manage Shots with another property.

	Removed the output_path attribute in FilenameTemplate class.

	Grouped the templates for each entity under a directory with the entity name.

0.2.0.a6

	Users now can have more than one Department.

	User instances now have two new properties for getting the user tickets
(User.tickets) and the open tickets (User.open_tickets).

	New shortcut Task.project returns the Task.task_of.project value.

	Shot and Asset creation dialogs now automatically updated with the given
Project instance info.

	User overview page is now reflection the new design.

0.2.0.a5

	The code attribute of the SimpleEntity is now introduced as a separate
mixin. To let it be used by the classes it is really needed.

	The query method is now converted to a property so it is now possible to
use it like a property as in the SQLAlchemy.orm.Session as shown below:

from stalker import Project
Project.query.all() # instead of Project.query().all()

	ScheduleMixin.due_date is renamed to ScheduleMixin.end_date.

	Added a new class attribute to SimpleEntity called __auto_name__ which
controls the naming of the instances and instances derived from SimpleEntity.
If __auto_name__ is set to True the name attribute of the instance
will be automatically generated and it will have the following format:

{{ClassName}}_{{UUID4}}

Here are a couple of naming examples:

Ticket_74bb46b0-29de-4f3e-b4e6-8bcf6aed352d
Version_2fa5749e-8cdb-4887-aef2-6d8cec6a4faa

	Fixed an autoflush issue with SQLAlchemy in StatusList class. Now the status
column is again not nullable in StatusMixin.

0.2.0.a4

	Added a new class called EntityType to hold all the available class names and
capabilities.

	Version class now has a new attribute called inputs to hold the inputs of
the current Version instance. It is a list of Link instances.

	FilenameTemplate classes path and filename attributes are no more
converted to string, so given a non string value will raise TypeError.

	Structure.custom_template now only accepts strings and None, setting it to
anything else will raise a TypeError.

	Two Type’s for FilenameTemplate’s are created by default when initializing
the database, first is called “Version” and it is used to define
FilenameTemplates which are used for placing Version source files. The second
one is called “Reference” and it is used when injecting references to a given
class. Along with the FilenameTemplate.target_entity_type this will allow one
to create two different FilenameTemplates for one class:

first get the Types
vers_type = Type.query()\
 .filter_by(target_entity_type="FilenameTemplate")\
 .filter_by(type="Version")\
 .first()

ref_type = Type.query()\
 .filter_by(target_entity_type="FilenameTemplate")\
 .filter_by(type="Reference")\
 .first()

lets create a FilenameTemplate for placing Asset Version files.
f_ver = FilenameTemplate(
 target_entity_type="Asset",
 type=vers_type,
 path="Assets/{{asset.type.code}}/{{asset.code}}/{{task.type.code}}",
 filename="{{asset.code}}_{{version.take_name}}_{{task.type.code}}_v{{'%03d'|version.version_number}}{{link.extension}}"
 output_path="{{version.path}}/Outputs/{{version.take_name}}"
)

and now define a FilenameTemplate for placing Asset Reference files.
no need to have an output_path here...
f_ref = FilenameTemplate(
 target_entity_type="Asset",
 type=ref_type,
 path="Assets/{{asset.type.code}}/{{asset.code}}/References",
 filename="{{link.type.code}}/{{link.id}}{{link.extension}}"
)

	stalker.db.register() now accepts only real classes instead of class names.
This way it can store more information about classes.

	Status.bg_color and Status.fg_color attributes are now simple integers. And
the Color class is removed.

	StatusMixin.status is now a ForeignKey to a the Statuses table, thus it is a
real Status instance instead of an integer showing the index of the Status in
the related StatusList. This way the Status of the object will not change if
the content of the StatusList is changed.

	Added new attribute Project.project_tasks which holds all the direct or
indirect Tasks created for that project.

	User.login_name is renamed to User.login.

	Removed the first_name, last_name and initials attributes from
User class. Now the name and code attributes are going to be used,
thus the name attribute is no more the equivalent of login and the
code attribute is doing what was initials doing previously.

0.2.0.a3

	Status class now has two new attributes bg_color and fg_color to hold
the UI colors of the Status instance. The colors are Color instances.

0.2.0.a2

	SimpleEntity now has an attribute called generic_data which can hold any
kind of SOM object inside and it is a list.

	Changed the formatting rules for the name in SimpleEntity class, now it
can start with a number, and it is not allowed to have multiple whitespace
characters following each other.

	The source attribute in Version is renamed to source_file.

	The version attribute in Version is renamed to version_number.

	The take attribute in Version is renamed to take_name.

	The version_number in Version is now generated automatically if it is
skipped or given as None or it is too low where there is already a version
number for the same Version series (means attached to the same Task and has
the same take_name.

	Moved the User class to stalker.models.auth module.

	Removed the stalker.ext.auth module because it is not necessary anymore.
Thus the User now handles all the password conversions by itself.

	PermissionGroup is renamed back to Group
again to match with the general naming of the authorization concept.

	Created two new classes for the Authorization system, first one is called
Permission and the second one is a Mixin which is called ACLMixin which adds
ACLs to the mixed in class. For now, only the User and Group classes are
mixed with this mixin by default.

	The declarative Base class of SQLAlchemy is now created by binding it to a
ORMClass (a random name) which lets all the derived class to have a method
called query which will bypass the need of calling
DBSession.query(class_) but instead just call class_.query():

from stalker.models.auth import User
user_1 = User.query().filter_by(name='a user name').first()

0.2.0.a1

	Changed the db.setup arguments. It is now accepting a dictionary instead
of just a string to comply with the SQLAlchemy scaffold and this dictionary
should contain keys for the SQLAlchemy engine setup. There is another utility
that comes with Pyramid to setup the database under the scripts folder, it
is also working without any problem with stalker.db.

	The session variable is renamed to DBSession and is now a scopped
session, so there is no need to use DBSession.commit it will be handled
by the system it self.

	Even though the DBSession is using the Zope Transaction Manager extension
normally, in the database tests no extension is used because the transaction
manager was swallowing all errors and it was a little weird to try to catch
this errors out of the with block.

	Refactored the code, all the models are now in separate python files, but can
be directly imported from the main stalker module as shown:

from stalker import User, Department, Task

By using this kind of organization, both development and usage will be eased
out.

	task_of now only accepts TaskableEntity instances.

	Updated the examples. It is now showing how to extend SOM correctly.

	Updated the references to the SOM classes in docstrings and rst files.

	Removed the Review class. And introduced the much handier Ticket class.
Now reviewing a data is the process of creating Ticket’s to that data.

	The database is now initialized with a StatusList and a couple of Statuses
appropriate for Ticket instances.

	The database is now initialized with two Type instances (‘Enhancement’ and
‘Defect’) suitable for Ticket instances.

	StatusMixin now stores the status attribute as an Integer showing the index
of the Status in the status_list attribute but when asked for the value
of StatusMixin.status attribute it will return a proper Status instance
and the attribute can be set with an integer or with a proper Status
instance.

stalker.db

Database module of Stalker.

Whenever stalker.db or something under it imported, the
stalker.db.setup() becomes available to let one setup the database.

Functions

	check_alembic_version()

	checks the alembic version of the database and raise a ValueError if it is not matching with this version of Stalker

	create_alembic_table()

	creates the default alembic_version table and creates the data so that any new database will be considered as the latest version

	create_entity_statuses([entity_type, …])

	creates the default task statuses

	create_repo_vars()

	creates environment variables for all of the repositories in the current database

	create_ticket_statuses()

	creates the default ticket statuses

	get_alembic_version()

	returns the alembic version of the database

	init()

	fills the database with default values

	register(class_)

	Registers the given class to the database.

	setup([settings])

	Utility function that helps to connect the system to the given database.

	update_defaults_with_studio()

	updates the default values from Studio instance if a database and a Studio instance is present

stalker.db.setup

	
stalker.db.setup(settings=None)

	Utility function that helps to connect the system to the given database.

if the database is None then the it setups using the default database in
the settings file.

	Parameters

	settings – This is a dictionary which has keys prefixed with
“sqlalchemy” and shows the settings. The most important one is the
engine. The default is None, and in this case it uses the settings from
stalker.config.Config.database_engine_settings

stalker.exceptions

Errors for the system.

This module contains the Errors in Stalker.

Exceptions

	CircularDependencyError([value])

	Raised when there is circular dependencies within Tasks

	DependencyViolationError([value])

	Raised when a TimeLog violates the dependency relation between tasks

	LoginError([value])

	Raised when the login information is not correct or not correlate with the data in the database.

	OverBookedError([value])

	Raised when a resource is booked more than once for the same time period

	StatusError([value])

	Raised when the status of an entity is not suitable for the desired action

stalker.exceptions.CircularDependencyError

	
exception stalker.exceptions.CircularDependencyError(value='')

	Raised when there is circular dependencies within Tasks

stalker.exceptions.LoginError

	
exception stalker.exceptions.LoginError(value='')

	Raised when the login information is not correct or not correlate with
the data in the database.

stalker.exceptions.OverBookedError

	
exception stalker.exceptions.OverBookedError(value='')

	Raised when a resource is booked more than once for the same time period

stalker.exceptions.StatusError

	
exception stalker.exceptions.StatusError(value='')

	Raised when the status of an entity is not suitable for the desired
action

stalker.models

Functions

	check_circular_dependency(entity, …)

	Checks the circular dependency in entity if it has other_entity in its dependency attr which is specified with attr_name

	local_to_utc(local_dt)

	converts local datetime to utc datetime

	make_plural(name)

	Returns the plural version of the given name argument.

	utc_to_local(utc_dt)

	converts utc time to local time

	walk_hierarchy(entity, attr[, method])

	Walks the entity hierarchy over the given attribute and yields the entity.

stalker.models.asset.Asset

[image: Inheritance diagram of stalker.models.asset.Asset]

	
class stalker.models.asset.Asset(code, **kwargs)

	Bases: stalker.models.task.Task, stalker.models.mixins.CodeMixin

The Asset class is the whole idea behind Stalker.

Assets are containers of Tasks. And Tasks are the
smallest meaningful part that should be accomplished to complete the
Project.

An example could be given as follows; you can create an asset for one of
the characters in your project. Than you can divide this character asset in
to Tasks. These Tasks can be defined by the type of
the Asset, which is a Type object created specifically
for Asset (ie. has its Type.target_entity_type set to
“Asset”),

An Asset instance should be initialized with a Project
instance (as the other classes which are mixed with the
TaskMixin). And when a Project instance is given then
the asset will append itself to the Project.assets list.

	..versionadded: 0.2.0:

	No more Asset to Shot connection:

Assets now are not directly related to Shots. Instead a
Version will reference the Asset and then it is easy to track
which shots are referencing this Asset by querying with a join of Shot
Versions referencing this Asset.

	
__init__(code, **kwargs)

	

Methods

	__init__(code, **kwargs)

	

	create_time_log(resource, start, end)

	A helper method to create TimeLogs, this will ease creating TimeLog instances for task.

	hold()

	Pauses the execution of this task by setting its status to OH.

	least_meaningful_time_unit(seconds[, …])

	returns the least meaningful timing unit that corresponds to the given seconds.

	request_review()

	Creates and returns Review instances for each of the responsible of this task and sets the task status to PREV.

	request_revision([reviewer, description, …])

	Requests revision.

	resume()

	Resumes the execution of this task by setting its status to RTS or WIP depending to its time_logs attribute, so if it has TimeLogs then it will resume as WIP and if it doesn’t then it will resume as RTS.

	review_set([review_number])

	returns the reviews with the given review_number, if review_number is skipped it will return the latest set of reviews

	round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

	stop()

	Stops this task.

	to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the schedule_model the value will differ.

	update_parent_statuses()

	updates the parent statuses of this task if any

	update_schedule_info()

	updates the total_logged_seconds and schedule_seconds attributes by using the children info and triggers an update on every children

	update_status_with_children_statuses()

	updates the task status according to its children statuses

	update_status_with_dependent_statuses([removing])

	updates the status by looking at the dependent tasks

	walk_dependencies([method])

	Walks the dependencies of this task

	walk_hierarchy([method])

	Walks the hierarchy of this task.

Attributes

	absolute_path

	the absolute_path attribute

	allocation_strategy

	Please read Task class documentation for details.

	alternative_resources

	The list of Users assigned to this Task as an alternative resource.

	asset_id

	

	bid_timing

	The value of the initial bid of this Task.

	bid_unit

	The unit of the initial bid of this Task.

	children

	Other Budget instances which are the children of this one.

	code

	The code name of this object.

	computed_duration

	returns the computed_duration as the difference of computed_start and computed_end if there are computed_start and computed_end otherwise returns None

	computed_end

	

	computed_resources

	getter for the _computed_resources attribute

	computed_start

	

	computed_total_seconds

	returns the duration as seconds

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	defaults

	

	dependent_of

	

	depends

	

	description

	Description of this object.

	duration

	Duration of the entity.

	end

	overridden end getter

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	good

	

	good_id

	

	html_class

	

	html_style

	

	id

	

	is_container

	Returns True if the Task has children Tasks

	is_leaf

	Returns True if the Task has no children Tasks

	is_milestone

	Specifies if this Task is a milestone.

	is_root

	Returns True if the Task has no parent

	is_scheduled

	A predicate which returns True if this task has both a computed_start and computed_end values

	level

	Returns the level of this task.

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	open_tickets

	returns the open tickets referencing this task in their links attribute

	parent

	A Task instance which is the parent of this Task.

	parent_id

	

	parents

	Returns all of the parents of this mixed in class starting from the root

	path

	The path attribute will generate a path suitable for placing the files under it.

	percent_complete

	returns the percent_complete based on the total_logged_seconds and schedule_seconds of the task.

	persistent_allocation

	Please read Task class documentation for details.

	plural_class_name

	the plural name of this class

	priority

	An integer number between 0 and 1000 used by TaskJuggler to determine the priority of this Task.

	project

	The owner Project of this task.

	project_id

	The id of the owner Project of this Task.

	query

	

	references

	A list of Link instances given as a reference for this entity.

	remaining_seconds

	returns the remaining amount of efforts, length or duration left in this Task as seconds.

	resources

	The list of Users assigned to this Task.

	responsible

	The responsible of this task.

	review_number

	returns the _review_number attribute value

	reviews

	A list of Review holding the details about the reviews created for this task.

	schedule_constraint

	An integer number showing the constraint schema for this task.

	schedule_model

	Defines the schedule model which is going to be used by TaskJuggler while scheduling this Task.

	schedule_seconds

	returns the total effort, length or duration in seconds, for completeness calculation

	schedule_timing

	It is the value of the schedule timing.

	schedule_unit

	It is the unit of the schedule timing.

	start

	overridden start getter

	status

	The current status of the object.

	status_id

	

	status_list

	

	status_list_id

	

	tags

	A list of tags attached to this object.

	task_dependent_of

	A list of Tasks that this one is being depended by.

	task_depends_to

	A list of Tasks that this one is depending on.

	task_id

	The primary_key attribute for the Tasks table used by SQLAlchemy to map this Task in relationships.

	tasks

	A synonym for the children attribute used by the descendants of the Task class (currently Asset, Shot and Sequence classes).

	thumbnail

	

	thumbnail_id

	

	tickets

	returns the tickets referencing this task in their links attribute

	time_logs

	A list of TimeLog instances showing who and when has spent how much effort on this task.

	tjp_abs_id

	returns the calculated absolute id of this task

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	TaskJuggler representation of this task

	total_logged_seconds

	The total effort spent for this Task.

	total_seconds

	returns the duration as seconds

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	versions

	A list of Version instances showing the files created for this task.

	watchers

	The list of Users watching this Task.

	
absolute_path

	the absolute_path attribute

	
allocation_strategy

	Please read Task class documentation for details.

	
alternative_resources

	The list of Users assigned to this Task as an alternative resource.

	
bid_timing

	The value of the initial bid of this Task. It is an integer or
a float.

	
bid_unit

	The unit of the initial bid of this Task. It is a string value.
And should be one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	
children

	Other Budget instances which are the children of this
one. This attribute along with the parent attribute is used in
creating a DAG hierarchy of tasks.

	
code

	The code name of this object.

It accepts strings. Can not be None.

	
computed_duration

	returns the computed_duration as the difference of computed_start
and computed_end if there are computed_start and computed_end otherwise
returns None

	
computed_resources

	getter for the _computed_resources attribute

	
computed_total_seconds

	returns the duration as seconds

	
create_time_log(resource, start, end)

	A helper method to create TimeLogs, this will ease creating TimeLog
instances for task.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
duration

	Duration of the entity.

It is a datetime.timedelta instance. Showing the difference of
the start and the end. If edited it changes
the end attribute value.

	
end

	overridden end getter

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
hold()

	Pauses the execution of this task by setting its status to OH. Only
applicable to RTS and WIP tasks, any task with other statuses will
raise a ValueError.

	
is_container

	Returns True if the Task has children Tasks

	
is_leaf

	Returns True if the Task has no children Tasks

	
is_milestone

	Specifies if this Task is a milestone.

Milestones doesn’t need any duration, any effort and any resources. It
is used to create meaningful dependencies between the critical stages
of the project.

	
is_root

	Returns True if the Task has no parent

	
is_scheduled

	A predicate which returns True if this task has both a
computed_start and computed_end values

	
classmethod least_meaningful_time_unit(seconds, as_work_time=True)

	returns the least meaningful timing unit that corresponds to the
given seconds. So if:

	as_work_time == True

	seconds % (1 years work time as seconds) == 0 –> ‘y’ else:
seconds % (1 month work time as seconds) == 0 –> ‘m’ else:
seconds % (1 week work time as seconds) == 0 –> ‘w’ else:
seconds % (1 day work time as seconds) == 0 –> ‘d’ else:
seconds % (1 hour work time as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes work time as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	as_work_time == False

	seconds % (1 years as seconds) == 0 –> ‘y’ else:
seconds % (1 month as seconds) == 0 –> ‘m’ else:
seconds % (1 week as seconds) == 0 –> ‘w’ else:
seconds % (1 day as seconds) == 0 –> ‘d’ else:
seconds % (1 hour as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	Parameters

	
	seconds (int [https://docs.python.org/3/library/functions.html#int]) – An integer showing the total seconds to be
converted.

	as_work_time (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the input be considered as work time
or calendar time.

	Returns int, string

	Returns one integer and one string, showing the
timing value and the unit.

	
level

	Returns the level of this task. It is a temporary property and will
be useless when Stalker has its own implementation of a proper Gantt
Chart. Write now it is used by the jQueryGantt.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
open_tickets

	returns the open tickets referencing this task in their links
attribute

	
parent

	A Task instance which is the parent of this Task.
In Stalker it is possible to create a hierarchy of Task.

	
parents

	Returns all of the parents of this mixed in class starting from the
root

	
path

	The path attribute will generate a path suitable for placing the
files under it. It will use the FilenameTemplate class
related to the Project Structure with the
target_entity_type is set to the type of this instance.

	
percent_complete

	returns the percent_complete based on the total_logged_seconds and
schedule_seconds of the task. Container tasks will use info from their
children

	
persistent_allocation

	Please read Task class documentation for details.

	
plural_class_name

	the plural name of this class

	
priority

	An integer number between 0 and 1000 used by TaskJuggler to
determine the priority of this Task. The default value is 500.

	
project

	The owner Project of this task.

It is a read-only attribute. It is not possible to change the owner
Project of a Task it is defined when the Task is created.

	
project_id

	The id of the owner Project of this Task. This
attribute is mainly used by SQLAlchemy to map a Project
instance to a Task.

	
references

	A list of Link instances given as a reference for
this entity.

	
remaining_seconds

	returns the remaining amount of efforts, length or duration left
in this Task as seconds.

	
request_review()

	Creates and returns Review instances for each of the responsible of
this task and sets the task status to PREV.

New in version 0.2.0: Request review will not cap the timing of this task anymore.

Only applicable to leaf tasks.

	
request_revision(reviewer=None, description='', schedule_timing=1, schedule_unit='h')

	Requests revision.

Applicable to PREV or CMPL leaf tasks. This method will expand the
schedule timings of the task according to the supplied arguments.

When request_revision is called on a PREV task, the other NEW Review
instances (those created when request_review on a WIP task is called
and still waiting a review) will be deleted.

This method at the end will return a new Review instance with correct
attributes (reviewer, description, schedule_timing, schedule_unit and
review_number attributes).

	Parameters

	
	reviewer (class:.User) – This is the user that requested the revision. He/she
doesn’t need to be the responsible, anybody that has a Permission to
create a Review instance can request a revision.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – The description of the requested revision.

	schedule_timing (int [https://docs.python.org/3/library/functions.html#int]) – The timing value of the requested revision.
The task will be extended this much of duration. Works along with the
schedule_unit parameter. The default value is 1.

	schedule_unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – The timin unit value of the requested
revision. The task will be extended this much of duration. Works
along with the schedule_timing parameter. The default value is
‘h’ for ‘hour’.

	
resources

	The list of Users assigned to this Task.

	
responsible

	The responsible of this task.

This attribute will return the responsible of this task which is a
list of User instances. If there is no responsible set
for this task, then it will try to find a responsible in its
parents.

	
resume()

	Resumes the execution of this task by setting its status to RTS or
WIP depending to its time_logs attribute, so if it has TimeLogs then it
will resume as WIP and if it doesn’t then it will resume as RTS. Only
applicable to Tasks with status OH.

	
review_number

	returns the _review_number attribute value

	
review_set(review_number=None)

	returns the reviews with the given review_number, if review_number
is skipped it will return the latest set of reviews

	
reviews

	A list of Review holding the details about the reviews
created for this task.

	
classmethod round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Uses stalker.defaults.timing_resolution as the closest number
of seconds to round to.

	Parameters

	dt (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – datetime.datetime object, defaults to now.

Based on Thierry Husson’s answer in Stackoverflow

Stackoverflow : http://stackoverflow.com/a/10854034/1431079

	
schedule_constraint

	An integer number showing the constraint schema for this
task.

Possible values are:

	0

	Constrain None

	1

	Constrain Start

	2

	Constrain End

	3

	Constrain Both

For convenience use stalker.models.task.CONSTRAIN_NONE,
stalker.models.task.CONSTRAIN_START,
stalker.models.task.CONSTRAIN_END,
stalker.models.task.CONSTRAIN_BOTH.

This value is going to be used to constrain the start and end date
values of this task. So if you want to pin the start of a task to a
certain date. Set its schedule_constraint value to
CONSTRAIN_START. When the task is scheduled by TaskJuggler
the start date will be pinned to the start attribute of
this task.

And if both of the date values (start and end) wanted to be pinned
to certain dates (making the task effectively a duration task)
set the desired start and end and then set the
schedule_constraint to CONSTRAIN_BOTH.

	
schedule_model

	Defines the schedule model which is going to be used by
TaskJuggler while scheduling this Task. It has three possible
values; effort, duration, length. effort is the
default value. Each value causes this task to be scheduled in
different ways:

	effort

	If the schedule_model attribute is set to
“effort” then the start and end date values are
calculated so that a resource should spent this much of
work time to complete a Task. For example, a task with
schedule_timing of 4 days, needs 4 working days.
So it can take 4 working days to complete the Task, but it
doesn’t mean that the task duration will be 4 days. If the
resource works overtime then the task will be finished
before 4 days or if the resource will not be available
(due to a vacation) then the task duration can be much
more.

	duration

	The duration of the task will exactly be equal to
schedule_timing regardless of the resource
availability. So the difference between start
and end attribute values are equal to
schedule_timing. Essentially making the task
duration in calendar days instead of working days.

	length

	In this model the duration of the task will exactly be
equal to the given length value in working days regardless
of the resource availability. So a task with the
schedule_timing is set to 4 days will be
completed in 4 working days. But again it will not be
always 4 calendar days due to the weekends or non working
days.

	
schedule_seconds

	returns the total effort, length or duration in seconds, for
completeness calculation

	
schedule_timing

	It is the value of the schedule timing. It is a float
value.

The timing value can either be as Work Time or Calendar Time
defined by the schedule_model attribute. So when the schedule_model
is duration then the value of this attribute is in Calendar Time,
and if the schedule_model is either length or effort then the
value is considered as Work Time.

	
schedule_unit

	It is the unit of the schedule timing. It is a string
value. And should be one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	
start

	overridden start getter

	
status

	The current status of the object.

It is a Status instance which
is one of the Statuses stored in the status_list attribute
of this object.

	
stop()

	Stops this task. It is nearly equivalent to deleting this task. But
this will at least preserve the TimeLogs entered for this task. It is
only possible to stop WIP tasks.

You can use resume() to resume the task.

The only difference between hold() (other than setting the task
to different statuses) is the schedule info, while the hold()
method will preserve the schedule info, stop() will set the schedule
info to the current effort.

So if 2 days of effort has been entered for a 4 days task, when stopped
the task effort will be capped to 2 days, thus TaskJuggler will not try
to reserve any resource for this task anymore.

Also, STOP tasks will be ignored in dependency relations.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
task_dependent_of

	A list of Tasks that this one is being depended by.

A CircularDependencyError will be raised when the task dependency
creates a circular dependency which means it is not allowed to create
a dependency for this Task which is depending on another one which in
some way depends to this one again.

	
task_depends_to

	A list of Tasks that this one is depending on.

A CircularDependencyError will be raised when the task dependency
creates a circular dependency which means it is not allowed to create
a dependency for this Task which is depending on another one which in
some way depends to this one again.

	
task_id

	The primary_key attribute for the Tasks table used by
SQLAlchemy to map this Task in relationships.

	
tasks

	A synonym for the children attribute used by the
descendants of the Task class (currently Asset,
Shot and Sequence classes).

	
tickets

	returns the tickets referencing this task in their links attribute

	
time_logs

	A list of TimeLog instances showing who and when has
spent how much effort on this task.

	
tjp_abs_id

	returns the calculated absolute id of this task

	
tjp_id

	returns TaskJuggler compatible id

	
classmethod to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the
schedule_model the value will differ. So if the schedule_model is
‘effort’ or ‘length’ then the schedule_time and schedule_unit values
are interpreted as work time, if the schedule_model is ‘duration’ then
the schedule_time and schedule_unit values are considered as calendar
time.

	
to_tjp

	TaskJuggler representation of this task

	
total_logged_seconds

	The total effort spent for this Task. It is the sum of all the
TimeLogs recorded for this task as seconds.

	Returns int

	An integer showing the total seconds spent.

	
total_seconds

	returns the duration as seconds

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
update_parent_statuses()

	updates the parent statuses of this task if any

	
update_schedule_info()

	updates the total_logged_seconds and schedule_seconds attributes by
using the children info and triggers an update on every children

	
update_status_with_children_statuses()

	updates the task status according to its children statuses

	
update_status_with_dependent_statuses(removing=None)

	updates the status by looking at the dependent tasks

	Parameters

	removing – The item that is been removing right now, used for the
remove event to overcome the update issue.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
versions

	A list of Version instances showing the files created
for this task.

	
walk_dependencies(method=1)

	Walks the dependencies of this task

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

	
walk_hierarchy(method=0)

	Walks the hierarchy of this task.

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

	
watchers

	The list of Users watching this Task.

stalker.models.auth.AuthenticationLog

[image: Inheritance diagram of stalker.models.auth.AuthenticationLog]

	
class stalker.models.auth.AuthenticationLog(user=None, date=None, action='login', **kwargs)

	Bases: stalker.models.entity.SimpleEntity

Keeps track of login/logout dates and the action (login or logout).

	
__init__(user=None, date=None, action='login', **kwargs)

	

Methods

	__init__([user, date, action])

	

Attributes

	action

	

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date

	

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	log_id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	plural_class_name

	the plural name of this class

	query

	

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	user

	The User instance that this AuthenticationLog is created for

	user_id

	

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
plural_class_name

	the plural name of this class

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
user

	The User instance that this AuthenticationLog is created for

stalker.models.auth.Group

[image: Inheritance diagram of stalker.models.auth.Group]

	
class stalker.models.auth.Group(name='', users=None, permissions=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.ACLMixin

Creates groups for users to be used in authorization system.

A Group instance is nothing more than a list of Users created
to be able to assign permissions in a group level.

The Group class, as with the User class, is mixed with the
ACLMixin which adds ability to hold Permission
instances and serve ACLs to Pyramid.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this group.

	users (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of User instances, holding the desired
users in this group.

	
__init__(name='', users=None, permissions=None, **kwargs)

	

Methods

	__init__([name, users, permissions])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	gid

	

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	permissions

	

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	users

	Users in this group.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
users

	Users in this group.

Accepts:class:.User instance.

stalker.models.auth.LocalSession

[image: Inheritance diagram of stalker.models.auth.LocalSession]

	
class stalker.models.auth.LocalSession

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simple temporary session object which simple stores session data.

This class will later be removed, it is here because we need a login window
for the Qt user interfaces.

On initialize it will load the SessionData from the users .strc folder

	
__init__()

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__()

	x.__init__(…) initializes x; see help(type(x)) for signature

	datetime_to_millis(dt)

	Default JSON serializer for datetime objects.

	default_json_serializer(obj)

	default serializer for json data

	delete()

	removes the cache file

	load()

	loads the data from the saved local session

	millis_to_datetime(millis)

	
	param int millis

	an int value showing the millis from unix EPOCH

	save()

	remembers the data in user local file system

	session_file_full_path()

	
	return str

	the session file full path

	store_user(user)

	stores the given user instance

Attributes

	logged_in_user

	returns the logged in user

	
classmethod datetime_to_millis(dt)

	Default JSON serializer for datetime objects.

code is based on the answer of Jay Taylor in
http://stackoverflow.com/questions/11875770/how-to-overcome-datetime-datetime-not-json-serializable-in-python

	Parameters

	dt – datetime.datetime instance

	
classmethod default_json_serializer(obj)

	default serializer for json data

	
delete()

	removes the cache file

	
load()

	loads the data from the saved local session

	
logged_in_user

	returns the logged in user

	
classmethod millis_to_datetime(millis)

	
	Parameters

	millis (int [https://docs.python.org/3/library/functions.html#int]) – an int value showing the millis from unix EPOCH

	Returns

	

	
save()

	remembers the data in user local file system

	
classmethod session_file_full_path()

	
	Return str

	the session file full path

	
store_user(user)

	stores the given user instance

	Parameters

	user – The user instance.

stalker.models.auth.Role

[image: Inheritance diagram of stalker.models.auth.Role]

	
class stalker.models.auth.Role(**kwargs)

	Bases: stalker.models.entity.Entity

Defines a User role.

When Users are assigned to a
Client/Department, they also can be assigned to a role
for that client/department.

Also, because Users can be assigned to multiple clients/departments they
can have different roles for each of this clients/departments.

The duty of this class is to defined different roles that can be reused
when required. So one can defined a Lead role and then assign a User to
a department with its role is set to “lead”. This essentially generalizes
the previous implementation of now removed Department.lead attribute.

	
__init__(**kwargs)

	

Methods

	__init__(**kwargs)

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	role_id

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.auth.Permission

[image: Inheritance diagram of stalker.models.auth.Permission]

	
class stalker.models.auth.Permission(access, action, class_name)

	Bases: sqlalchemy.ext.declarative.api.Base

A class to hold permissions.

Permissions in Stalker defines what one can do or do not. A Permission
instance is composed by three attributes; access, action and class_name.

Permissions for all the classes in SOM are generally created by Stalker
when initializing the database.

If you created any custom classes to extend SOM you are also responsible to
create the Permissions for it by calling stalker.db.register() and
passing your class to it. See the stalker.db documentation for
details.

	Parameters

	
	access (str [https://docs.python.org/3/library/stdtypes.html#str]) – An Enum value which can have the one of the values of
Allow or Deny.

	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – An Enum value from the list [‘Create’, ‘Read’, ‘Update’,
‘Delete’, ‘List’]. Can not be None. The list can be changed from
stalker.config.Config.default_actions.

	class_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the class that this action is applied
to. Can not be None or an empty string.

Example: Let say that you want to create a Permission specifying a Group of
Users are allowed to create Projects:

from stalker import db
from stalker import db
from stalker.models.auth import User, Group, Permission

first setup the db with the default database
#
stalker.db.init() will create all the Actions possible with the
SOM classes automatically
#
What is left to you is to create the permissions
db.setup()

user1 = User(
 name='Test User',
 login='test_user1',
 password='1234',
 email='testuser1@test.com'
)
user2 = User(
 name='Test User',
 login='test_user2',
 password='1234',
 email='testuser2@test.com'
)

group1 = Group(name='users')
group1.users = [user1, user2]

get the permissions for the Project class
project_permissions = Permission.query .filter(Permission.access='Allow') .filter(Permission.action='Create') .filter(Permission.class_name='Project') .first()

now we have the permission specifying the allowance of creating a
Project

to make group1 users able to create a Project we simply add this
Permission to the groups permission attribute
group1.permissions.append(permission)

and persist this information in the database
DBSession.add(group)
DBSession.commit()

	
__init__(access, action, class_name)

	

Methods

	__init__(access, action, class_name)

	

Attributes

	access

	returns the _access value

	action

	returns the _action value

	class_name

	returns the _class_name attribute value

	defaults

	

	id

	

	metadata

	

	plural_class_name

	the plural name of this class

	query

	

	
access

	returns the _access value

	
action

	returns the _action value

	
class_name

	returns the _class_name attribute value

	
plural_class_name

	the plural name of this class

stalker.models.auth.User

[image: Inheritance diagram of stalker.models.auth.User]

	
class stalker.models.auth.User(name=None, login=None, email=None, password=None, departments=None, companies=None, groups=None, efficiency=1.0, rate=0.0, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.ACLMixin

The user class is designed to hold data about a User in the system.

Note

New to version 0.2.0 users can be assigned to a Task as a
Watcher. Which can be used to inform the users in watchers list
about the updates of certain Tasks.

Note

It is now possible to define Vacations per user.

Note

Note

	Parameters

	
	rate – For future usage a rate attribute is added to the User to record the
daily cost of this user as a resource. It should be either 0 or a
positive integer or float value. Default is 0.

	efficiency – The efficiency is a multiplier for a user as a resource to a task and
defines how much of the time spent for that particular task is counted as
an actual effort. The default value is 1.0, lowest possible value is 0.0
and there is no upper limit.

The efficiency of a resource can be used for three purposes. First you
can use it as a crude way to model a team. A team of 5 people should have
an efficiency of 5.0. Keep in mind that you cannot track the members of
the team individually if you use this feature. They always act as a
group.

Another use is to model performance variations between your resources.
Again, this is a fairly crude mechanism and should be used with care. A
resource that isn’t every good at some task might be pretty good at
another. This can’t be taken into account as the resource efficiency can
only set globally for all tasks.

One another and interesting use is to model the availability of passive
resources like a meeting room or a workstation or something that needs to
be free for a task to take place but does not contribute to a task as an
active resource.

All resources that do not contribute effort to the task, that is a
passive resource, should have an efficiency of 0.0. Again a typical
example would be a conference room. It’s necessary for a meeting, but it
does not contribute any work.

	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – holds the e-mail of the user, should be in [part1]@[part2]
format

	login (str [https://docs.python.org/3/library/stdtypes.html#str]) – This is the login name of the user, it should be all lower
case. Giving a string that has uppercase letters, it will be converted to
lower case. It can not be an empty string or None and it can not contain
any white space inside.

	departments (list of Departments) – It is the departments that the user is a part of. It
should be a list of Department objects. One user can be listed in
multiple departments.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – it is the password of the user, can contain any character.
Stalker doesn’t store the raw passwords of the users. To check a stored
password with a raw password use check_password() and to set the
password you can use the password property directly.

	groups (list of Group) – It is a list of Group instances that this user
belongs to.

	tasks (list of Tasks) – it is a list of Task objects which holds the tasks that this
user has been assigned to

	last_login (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – it is a datetime.datetime object holds the last login
date of the user (not implemented yet)

	
__init__(name=None, login=None, email=None, password=None, departments=None, companies=None, groups=None, efficiency=1.0, rate=0.0, **kwargs)

	

Methods

	__init__([name, login, email, password, …])

	

	check_password(raw_password)

	Checks the given raw_password.

Attributes

	alternative_resource_in_tasks

	

	authentication_logs

	A list of AuthenticationLog instances which holds the login/logout info for this User.

	companies

	

	company_role

	A list of Clients that this user is a part of.

	computed_resource_in_tasks

	

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	department_role

	A list of Departments that this user is a part of

	departments

	

	description

	Description of this object.

	efficiency

	

	email

	email of the user, accepts string

	entities_created

	

	entities_updated

	

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	groups

	Permission groups that this users is a member of.

	html_class

	

	html_style

	

	id

	

	login

	The login name of the user.

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	open_tickets

	The list of open Tickets that this user has.

	password

	The password of the user.

	permissions

	

	plural_class_name

	the plural name of this class

	project_role

	

	projects

	

	query

	

	rate

	

	responsible_of

	A list of Task instances that this user is responsible of.

	tags

	A list of tags attached to this object.

	tasks

	Tasks assigned to this user.

	thumbnail

	

	thumbnail_id

	

	tickets

	The list of Tickets that this user has.

	time_logs

	A list of TimeLog instances which holds the time logs created for this User.

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	outputs a TaskJuggler formatted string

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	user_id

	

	vacations

	A list of Vacation instances which holds the vacations created for this User

	watching

	Taskss that this user is assigned as a watcher.

	
authentication_logs

	A list of AuthenticationLog instances which holds the
login/logout info for this User.

	
check_password(raw_password)

	Checks the given raw_password.

Checks the given raw_password with the current User object’s mangled
password. Handles the encryption process behind the scene.

	Note:

	This function was updated to support both Python 2.7 and 3.5.
It will now compare the string (str) versions of the given
raw_password and the current Users object encrypted password.

	
company_role

	A list of Clients that this user is a part of.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
department_role

	A list of Departments that
this user is a part of

	
description

	Description of this object.

	
email

	email of the user, accepts string

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
groups

	Permission groups that this users is a member of.

Accepts Group object.

	
login

	The login name of the user.

Can not be empty.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
open_tickets

	The list of open Tickets that this user has.

returns a list of Ticket instances which has a status of
Open that this user is assigned as the owner.

	
password

	The password of the user.

It is scrambled before it is stored.

	
plural_class_name

	the plural name of this class

	
responsible_of

	A list of Task instances that this user is responsible
of.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tasks

	Tasks assigned to this user.

It is a list of Task instances.

	
tickets

	The list of Tickets that this user has.

returns a list of Ticket instances
which this user is the owner of.

	
time_logs

	A list of TimeLog instances which
holds the time logs created for this User.

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	outputs a TaskJuggler formatted string

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
vacations

	A list of Vacation instances
which holds the vacations created for this User

	
watching

	Taskss that this user is
assigned as a watcher.

It is a list of Task instances.

stalker.models.budget.Budget

[image: Inheritance diagram of stalker.models.budget.Budget]

	
class stalker.models.budget.Budget(**kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.ProjectMixin, stalker.models.mixins.DAGMixin, stalker.models.mixins.StatusMixin

Manages project budgets

Budgets manager Project budgets. You can create entries as
instances of BudgetEntry class.

	
__init__(**kwargs)

	

Methods

	__init__(**kwargs)

	

	walk_hierarchy([method])

	Walks the hierarchy of this task.

Attributes

	budget_id

	

	children

	Other Budget instances which are the children of this one.

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	entries

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	invoices

	

	is_container

	Returns True if the Task has children Tasks

	is_leaf

	Returns True if the Task has no children Tasks

	is_root

	Returns True if the Task has no parent

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	parent

	A Budget instance which is the parent of this Budget.

	parent_id

	

	parents

	Returns all of the parents of this mixed in class starting from the root

	plural_class_name

	the plural name of this class

	project

	The Project instance that this object belongs to.

	project_id

	

	query

	

	status

	The current status of the object.

	status_id

	

	status_list

	

	status_list_id

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
children

	Other Budget instances which are the children of this
one. This attribute along with the parent attribute is used in
creating a DAG hierarchy of tasks.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
is_container

	Returns True if the Task has children Tasks

	
is_leaf

	Returns True if the Task has no children Tasks

	
is_root

	Returns True if the Task has no parent

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
parent

	A Budget instance which is the parent of this Budget.
In Stalker it is possible to create a hierarchy of Budget.

	
parents

	Returns all of the parents of this mixed in class starting from the
root

	
plural_class_name

	the plural name of this class

	
project

	The Project instance that
this object belongs to.

	
status

	The current status of the object.

It is a Status instance which
is one of the Statuses stored in the status_list attribute
of this object.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
walk_hierarchy(method=0)

	Walks the hierarchy of this task.

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

stalker.models.budget.BudgetEntry

[image: Inheritance diagram of stalker.models.budget.BudgetEntry]

	
class stalker.models.budget.BudgetEntry(budget=None, good=None, price=0, realized_total=0, amount=0.0, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.AmountMixin, stalker.models.mixins.UnitMixin

Manages entries in a Budget.

With BudgetEntries one can manage project budget entries one by one. Each
entry shows one component of a bigger budget. Entries are generally a
reflection of a Good instance and shows how many of that Good has
been included in this Budget, and what was the discounted price of that
Good.

	Parameters

	
	budget – The Budget that this entry is a part of.

	good – Stores a Good instance to carry all the
cost/msrp/unit data from.

	price (float [https://docs.python.org/3/library/functions.html#float]) – The decided price of this entry. This is generally
bigger than the cost and should be also bigger than
msrp but the person that is editing the budget which this entry
is related to can decide to do a discount on this entry and give a
different price. This attribute holds the proposed final price.

	realized_total (float [https://docs.python.org/3/library/functions.html#float]) – This attribute is for holding the realized
price of this entry. It can be the same number of the price
multiplied by the amount or can be something else that reflects
the reality. Generally it is for calculating the “service” cost/profit.

	amount (float [https://docs.python.org/3/library/functions.html#float]) – Defines the amount of Good that is in
consideration for this entry.

	
__init__(budget=None, good=None, price=0, realized_total=0, amount=0.0, **kwargs)

	

Methods

	__init__([budget, good, price, …])

	

Attributes

	amount

	

	budget

	

	budget_id

	

	cost

	

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	entry_id

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	good

	

	good_id

	

	html_class

	

	html_style

	

	id

	

	metadata

	

	msrp

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	price

	

	query

	

	realized_total

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	unit

	

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.budget.Good

[image: Inheritance diagram of stalker.models.budget.Good]

	
class stalker.models.budget.Good(cost=0.0, msrp=0.0, unit='', client=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.UnitMixin

Manages commercial items that is served by the Studio.

A Studio can define service prices or items that’s been sold by the Studio
by using a list of commercial items.

Note

Clients now can own a list of Goods attached to them.
So one can define a list of Goods with special prices
adjusted for a particular Client, then get them back from the db by
querying the Goods those have their client attribute set
to that particular Client instance. Removing a Good from a
Client will not delete it from the database, but deleting a
Client will also delete the Goods attached to that
particular Client.

A Good has the following attributes

	Parameters

	
	msrp – The suggested retail price for this item.

	cost – The cost of this item to the Studio, so generally it is better
to keep price of the related BudgetEntry bigger than this value to get
profit by selling this item.

	unit – The unit of this item.

	
__init__(cost=0.0, msrp=0.0, unit='', client=None, **kwargs)

	

Methods

	__init__([cost, msrp, unit, client])

	

Attributes

	client

	

	client_id

	

	cost

	

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	good_id

	

	html_class

	

	html_style

	

	id

	

	metadata

	

	msrp

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	price_lists

	PriceLists that this good is related to.

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	unit

	

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
price_lists

	PriceLists that this good is related to.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.budget.Invoice

[image: Inheritance diagram of stalker.models.budget.Invoice]

	
class stalker.models.budget.Invoice(budget=None, client=None, amount=0, unit=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.AmountMixin, stalker.models.mixins.UnitMixin

Holds information about invoices

Invoices are part of Budgets. The main purpose of invoices are
to track the Payments. It is a very primitive entity. It is
by no means designed to hold real financial information (at least for now).

	Parameters

	
	client (Client) – The Client instance that shows the payer for
this invoice.

	budget (Budget) – The Budget instance that owns this invoice.

	float amount (int [https://docs.python.org/3/library/functions.html#int]) – The amount of this invoice. Without the
Invoice.unit attribute it is meaningless. This can not be
skipped.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – The unit of the issued amount. This can not be skipped.

	
__init__(budget=None, client=None, amount=0, unit=None, **kwargs)

	

Methods

	__init__([budget, client, amount, unit])

	

Attributes

	amount

	

	budget

	

	budget_id

	

	client

	

	client_id

	

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	invoice_id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	payments

	

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	unit

	

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.budget.Payment

[image: Inheritance diagram of stalker.models.budget.Payment]

	
class stalker.models.budget.Payment(invoice=None, amount=0, unit=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.AmountMixin, stalker.models.mixins.UnitMixin

Holds information about the payments.

Each payment should be related with an Invoice instance. Use the
type attribute to diversify payments (ex. “Advance”).

	Parameters

	invoice (Invoice) – The Invoice instance that this payment is related
to. This can not be skipped.

	
__init__(invoice=None, amount=0, unit=None, **kwargs)

	

Methods

	__init__([invoice, amount, unit])

	

Attributes

	amount

	

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	invoice

	

	invoice_id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	payment_id

	

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	unit

	

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.budget.PriceList

[image: Inheritance diagram of stalker.models.budget.PriceList]

	
class stalker.models.budget.PriceList(goods=None, **kwargs)

	Bases: stalker.models.entity.Entity

Contains CommercialItems to create a list of items that is sold by the
Studio.

You can create different lists for items sold in this studio.

	
__init__(goods=None, **kwargs)

	

Methods

	__init__([goods])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	goods

	Goods in this list.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	price_list_id

	

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
goods

	Goods in this list.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.department.Department

[image: Inheritance diagram of stalker.models.department.Department]

	
class stalker.models.department.Department(users=None, **kwargs)

	Bases: stalker.models.entity.Entity

The departments that forms the studio itself.

The information that a Department object holds is like:

	The members of the department

	and all the other things those are inherited from the AuditEntity class

Two Department object considered the same if they have the same name, the
the users list is not important, a “Modeling” department
should of course be the same with another department which has the name
“Modeling” again.

so creating a department object needs the following parameters:

	Parameters

	users – it can be an empty list, so one department can be created
without any member in it. But this parameter should be a list of User
objects.

	
__init__(users=None, **kwargs)

	

Methods

	__init__([users])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	department_id

	

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	outputs a TaskJuggler compatible string

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	user_role

	List of users representing the members of this department.

	users

	

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	outputs a TaskJuggler compatible string

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
user_role

	List of users representing the members of this department.

stalker.models.department.DepartmentUser

[image: Inheritance diagram of stalker.models.department.DepartmentUser]

	
class stalker.models.department.DepartmentUser(department=None, user=None, role=None)

	Bases: sqlalchemy.ext.declarative.api.Base

The association object used in Department-to-User relation

	
__init__(department=None, user=None, role=None)

	

Methods

	__init__([department, user, role])

	

Attributes

	department

	

	department_id

	

	metadata

	

	plural_class_name

	the plural name of this class

	query

	

	role

	

	role_id

	

	user

	

	user_id

	

	
plural_class_name

	the plural name of this class

stalker.models.client.Client

[image: Inheritance diagram of stalker.models.client.Client]

	
class stalker.models.client.Client(users=None, projects=None, **kwargs)

	Bases: stalker.models.entity.Entity

The Client (e.g. a company) which users may be part of.

The information that a Client object holds is like:

	The users of the client

	The projects affiliated with the client

	and all the other things those are inherited from the Entity class

Note

Clients now can own a list of Goods attached to them.
So one can define a list of class:.Goods with special prices
adjusted for a particular Client, then get them back from the db by
querying the Goods those have their client attribute set
to that particular Client instance. Removing a Good from a
Client will not delete it from the database, but deleting a
Client will also delete the Goods attached to that
particular Client.

Two Client object considered the same if they have the same name.

So creating a client object needs the following parameters:

	Parameters

	
	users (list of Users) – It can be an empty list, so one client can be created
without any user in it. But this parameter should be a list of User
objects.

	projects – it can be an empty list, so one client can be created
without any project in it. But this parameter should be a list of Project
objects.

	
__init__(users=None, projects=None, **kwargs)

	

Methods

	__init__([users, projects])

	

	to_tjp()

	renders a TaskJuggler compliant string used for TaskJuggler integration.

Attributes

	client_id

	

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	goods

	

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	project_role

	

	projects

	

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	user_role

	List of users representing the members of this client.

	users

	

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp()

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
user_role

	List of users representing the members of this client.

stalker.models.client.ClientUser

[image: Inheritance diagram of stalker.models.client.ClientUser]

	
class stalker.models.client.ClientUser(client=None, user=None, role=None)

	Bases: sqlalchemy.ext.declarative.api.Base

The association object used in Client-to-User relation

	Parameters

	
	client (Client) – The client which the user is affiliated with.

	user (User) – A User instance.

	
__init__(client=None, user=None, role=None)

	

Methods

	__init__([client, user, role])

	

Attributes

	client

	

	client_id

	

	metadata

	

	plural_class_name

	the plural name of this class

	query

	

	role

	

	role_id

	

	user

	

	user_id

	

	
plural_class_name

	the plural name of this class

stalker.models.entity.Entity

[image: Inheritance diagram of stalker.models.entity.Entity]

	
class stalker.models.entity.Entity(tags=None, notes=None, **kwargs)

	Bases: stalker.models.entity.SimpleEntity

Another base data class that adds tags and notes to the attributes list.

This is the entity class which is derived from the SimpleEntity and adds
only tags to the list of parameters.

Two Entities considered equal if they have the same name. It doesn’t matter
if they have different tags or notes.

	Parameters

	
	tags (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of Tag objects related to this entity.
tags could be an empty list, or when omitted it will be set to an empty
list.

	notes (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of Note instances. Can be an empty
list, or when omitted it will be set to an empty list, when set to None
it will be converted to an empty list.

	
__init__(tags=None, notes=None, **kwargs)

	

Methods

	__init__([tags, notes])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.entity.EntityGroup

[image: Inheritance diagram of stalker.models.entity.EntityGroup]

	
class stalker.models.entity.EntityGroup(entities=None, **kwargs)

	Bases: stalker.models.entity.Entity

Groups a wide variety of objects together to let one easily reach them.

EntityGroup helps grouping different types of entities together
to let one easily reach to them.

	
__init__(entities=None, **kwargs)

	

Methods

	__init__([entities])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entities

	All the :class:`.SimpleEntity`s grouped in this EntityGroup.

	entity_group_id

	

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
entities

	All the :class:`.SimpleEntity`s grouped in this EntityGroup.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.entity.SimpleEntity

[image: Inheritance diagram of stalker.models.entity.SimpleEntity]

	
class stalker.models.entity.SimpleEntity(name=None, description='', generic_text='', type=None, created_by=None, updated_by=None, date_created=None, date_updated=None, thumbnail=None, html_style='', html_class='', **kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

The base class of all the others

The SimpleEntity is the starting point of the Stalker Object Model, it
starts by adding the basic information about an entity which are
name, description, the audit information like
created_by, updated_by, date_created,
date_updated and a couple of naming attributes like
nice_name and last but not least the type attribute which
is very important for entities that needs a type.

Note

For derived classes if the
SimpleEntity.type needed to be specifically specified, that is
it can not be None or nothing else then a Type instance, set
the strictly_typed class attribute to True:

class NewClass(SimpleEntity):
 __strictly_typed__ = True

This will ensure that the derived class always have a proper
SimpleEntity.type attribute and can not be initialized without
one.

Two SimpleEntities considered to be equal if they have the same
name, the other attributes doesn’t matter.

New in version 0.2.0: Name attribute can be skipped. Starting from version 0.2.0 the name
attribute can be skipped. For derived classes use the __auto_name__
class attribute to control auto naming behaviour.

	Parameters

	
	name (string) – A string value that holds the name of this entity.
It should not contain any white space at the beginning and at the end of
the string. Valid characters are [a-zA-Z0-9_/S].

Advanced:

For classes derived from the SimpleEntity, if an automatic name is
desired, the ``__auto_name__`` class attribute can be set to True. Then
Stalker will automatically generate a uuid4 sequence for the name
attribute.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string attribute that holds the description of
this entity object, it could be an empty string, and it could not again
have white spaces at the beginning and at the end of the string,
again any given objects will be converted to strings

	generic_text (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string attribute that holds any text based
information that should be affiliated with this entity, it could be an
empty string, and it could not again have white spaces at the beginning
and at the end of the string, again any given objects will be converted
to strings.

	created_by (User) – The User who has created
this object

	updated_by – The User who has updated this object lastly.
The created_by and updated_by attributes point the same object if this
object is just created.

	date_created (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – The date that this object is created.

	date_updated (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – The date that this object is updated lastly. For newly
created entities this is equal to date_created and the date_updated
cannot point a date which is before date_created.

	type (Type) – The type of the current SimpleEntity. Used across several
places in Stalker. Can be None. The default value is None.

	
__init__(name=None, description='', generic_text='', type=None, created_by=None, updated_by=None, date_created=None, date_updated=None, thumbnail=None, html_style='', html_class='', **kwargs)

	

Methods

	__init__([name, description, generic_text, …])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	plural_class_name

	the plural name of this class

	query

	

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
plural_class_name

	the plural name of this class

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.format.ImageFormat

[image: Inheritance diagram of stalker.models.format.ImageFormat]

	
class stalker.models.format.ImageFormat(width=None, height=None, pixel_aspect=1.0, print_resolution=300, **kwargs)

	Bases: stalker.models.entity.Entity

Common image formats for the Projects.

	Parameters

	
	width – The width of the format, it cannot be zero or negative, if a
float number is given it will be converted to integer

	height – The height of the format, it cannot be zero or negative, if
a float number is given it will be converted to integer

	pixel_aspect – The pixel aspect ratio of the current ImageFormat
object, it cannot be zero or negative, and if given as an integer it
will be converted to a float, the default value is 1.0

	print_resolution – The print resolution of the ImageFormat given as
DPI (dot-per-inch). It cannot be zero or negative

	
__init__(width=None, height=None, pixel_aspect=1.0, print_resolution=300, **kwargs)

	

Methods

	__init__([width, height, pixel_aspect, …])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	device_aspect

	returns the device aspect

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	height

	The height of this format

	html_class

	

	html_style

	

	id

	

	imageFormat_id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	pixel_aspect

	The pixel aspect ratio of this format.

	plural_class_name

	the plural name of this class

	print_resolution

	The print resolution of this format

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	width

	The width of this format.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
device_aspect

	returns the device aspect

because the device_aspect is calculated from the width/height*pixel
formula, this property is read-only.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
height

	The height of this format

	the height should be set to a positive non-zero integer

	integers are also accepted but will be converted to float

	for improper inputs the object will raise an exception.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
pixel_aspect

	The pixel aspect ratio of this format.

	the pixel_aspect should be set to a positive non-zero float

	integers are also accepted but will be converted to float

	for improper inputs the object will raise an exception

	
plural_class_name

	the plural name of this class

	
print_resolution

	The print resolution of this format

	it should be set to a positive non-zero float or integer

	integers are also accepted but will be converted to float

	for improper inputs the object will raise an exception.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
width

	The width of this format.

	the width should be set to a positive non-zero integer

	integers are also accepted but will be converted to float

	for improper inputs the object will raise an exception.

stalker.models.link.Link

[image: Inheritance diagram of stalker.models.link.Link]

	
class stalker.models.link.Link(full_path='', original_filename='', **kwargs)

	Bases: stalker.models.entity.Entity

Holds data about external links.

Links are all about giving some external information to the current entity
(external to the database, so it can be something on the
Repository or in the Web or anywhere that the server can reach).
The type of the link (general, file, folder, web page, image, image
sequence, video, movie, sound, text etc.) can be defined by a
Type instance (you can also use multiple Tag instances
to add more information, and to filter them back). Again it is defined by
the needs of the studio.

For sequences of files the file name should be in “%h%p%t %R” format in
PySeq [http://packages.python.org/pyseq/] formatting rules.

There are three secondary attributes (properties to be more precise)
path, filename and extension. These attributes are derived from
the full_path attribute and they modify it.

	Path

	It is the path part of the full_path

	Filename

	It is the filename part of the full_path, also includes the extension,
so changing the filename also changes the extension part.

	Extension

	It is the extension part of the full_path. It also includes the extension
separator (‘.’ for most of the file systems).

	Parameters

	full_path – The full path to the link, it can be a path to a folder
or a file in the file system, or a web page. For file sequences use
“%h%p%t %R” format, for more information see PySeq Documentation [http://packages.python.org/pyseq/].
It can be set to empty string (or None which will be converted to an
empty string automatically).

	
__init__(full_path='', original_filename='', **kwargs)

	

Methods

	__init__([full_path, original_filename])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	extension

	the extension property

	filename

	the filename property

	full_path

	The full path of the url to the link.

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	link_id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	original_filename

	

	path

	the path property

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
extension

	the extension property

	
filename

	the filename property

	
full_path

	The full path of the url to the link.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
path

	the path property

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.message.Message

[image: Inheritance diagram of stalker.models.message.Message]

	
class stalker.models.message.Message(**kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.StatusMixin

The base of the messaging system in Stalker

Messages are one of the ways to collaborate in Stalker. The model of the
messages is taken from the e-mail system. So it is pretty similar to an
e-mail message.

	Parameters

	
	from – the User object sending the message.

	to – the list of Users to receive this message

	subject – the subject of the message

	body – the body of the message

	in_reply_to – the Message object which this message is a
reply to.

	replies – the list of Message objects which are the direct
replies of this message

	attachments – a list of SimpleEntity objects attached to
this message (so anything can be attached to a message)

	
__init__(**kwargs)

	

Methods

	__init__(**kwargs)

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	message_id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	status

	The current status of the object.

	status_id

	

	status_list

	

	status_list_id

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
status

	The current status of the object.

It is a Status instance which
is one of the Statuses stored in the status_list attribute
of this object.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.mixins.ACLMixin

[image: Inheritance diagram of stalker.models.mixins.ACLMixin]

	
class stalker.models.mixins.ACLMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A Mixin for adding ACLs to mixed in class.

Access control lists or ACLs are used to determine if the given resource
has the permission to access the given data. It is based on Pyramids
Authorization system but organized to fit in Stalker style.

The ACLMixin adds an attribute called permissions and a
property called __acl__ to be able to pass the permission data to
Pyramid framework.

	
__init__()

	x.__init__(…) initializes x; see help(type(x)) for signature

Attributes

	ACLMixin.permissions

	

stalker.models.mixins.CodeMixin

[image: Inheritance diagram of stalker.models.mixins.CodeMixin]

	
class stalker.models.mixins.CodeMixin(code=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Adds code info to the mixed in class.

New in version 0.2.0: The code attribute of the SimpleEntity is now introduced as a separate
mixin. To let it be used by the classes it is really needed.

The CodeMixin just adds a new field called code. It is a very simple
attribute and is used for simplifying long names (like Project.name etc.).

Contrary to previous implementations the code attribute is not formatted in
anyway, so care needs to be taken if the code attribute is going to be used
in filesystem as file and directory names.

	Parameters

	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – The code attribute is a string, can not be empty or can
not be None.

	
__init__(code=None, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__([code])

	x.__init__(…) initializes x; see help(type(x)) for signature

Attributes

	code

	

stalker.models.mixins.DateRangeMixin

[image: Inheritance diagram of stalker.models.mixins.DateRangeMixin]

	
class stalker.models.mixins.DateRangeMixin(start=None, end=None, duration=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Adds date range info to the mixed in class.

Adds date range information like start, end and duration. These
attributes will be used in TaskJuggler. Because effort is only
meaningful if there are some resources this attribute has been left
special for Task class. The length has not been implemented
because of its rare use.

The preceding order for the attributes is as follows:

start > end > duration

So if all of the parameters are given only the start and the end
will be used and the duration will be calculated accordingly. In any
other conditions the missing parameter will be calculated from the
following table:

	start

	end

	duration

	DEFAULTS

	
	
	
	start = datetime.datetime.now(pytz.utc)

duration = datetime.timedelta(days=10)

end = start + duration

	X

	
	
	duration = datetime.timedelta(days=10)

end = start + duration

	X

	X

	
	duration = end - start

	X

	
	X

	end = start + duration

	X

	X

	X

	duration = end - start

	
	X

	X

	start = end - duration

	
	X

	
	duration = datetime.timedelta(days=10)

start = end - duration

	
	
	X

	start = datetime.datetime.now(pytz.utc)

end = start + duration

Only the start, end will be stored. The duration attribute is
the direct difference of the the start and end attributes, so there
is no need to store it. But if will be used in calculation of the start and
end values.

The start and end attributes have a computed companion. Which are the
return values from TaskJuggler. so for start there is the
computed_start and for end there is the computed_end attributes.
These values are going to be used in Gantt Charts.

The date attributes can be managed with timezones. Follow the Python idioms
shown in the documentation of datetime [http://docs.python.org/library/datetime.html]

	Parameters

	
	start (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – the start date of the entity, should be a datetime.datetime
instance, the start is the pin point for the date calculation. In
any condition if the start is available then the value will be
preserved. If start passes the end the end is also changed
to a date to keep the timedelta between dates. The default value is
datetime.datetime.now(pytz.utc)

	end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) – the end of the entity, should be a datetime.datetime instance,
when the start is changed to a date passing the end, then the end is also
changed to a later date so the timedelta between the dates is kept.

	duration (datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) – The duration of the entity. It is a
datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] instance. The default value is read from
the Config class. See the table above for the initialization
rules.

	
__init__(start=None, end=None, duration=None, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__([start, end, duration])

	x.__init__(…) initializes x; see help(type(x)) for signature

	round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Attributes

	computed_duration

	returns the computed_duration as the difference of computed_start and computed_end if there are computed_start and computed_end otherwise returns None

	computed_end

	

	computed_start

	

	computed_total_seconds

	returns the duration as seconds

	duration

	

	end

	

	start

	

	total_seconds

	returns the duration as seconds

	
computed_duration

	returns the computed_duration as the difference of computed_start
and computed_end if there are computed_start and computed_end otherwise
returns None

	
computed_total_seconds

	returns the duration as seconds

	
classmethod round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Uses stalker.defaults.timing_resolution as the closest number
of seconds to round to.

	Parameters

	dt (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – datetime.datetime object, defaults to now.

Based on Thierry Husson’s answer in Stackoverflow

Stackoverflow : http://stackoverflow.com/a/10854034/1431079

	
total_seconds

	returns the duration as seconds

stalker.models.mixins.ProjectMixin

[image: Inheritance diagram of stalker.models.mixins.ProjectMixin]

	
class stalker.models.mixins.ProjectMixin(project=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Allows connecting a Project to the mixed in object.

This also forces a all, delete-orphan cascade, so when a
:class:.Project instance is deleted then all the class instances that
are inherited from ProjectMixin will also be deleted. Meaning that, a
class which also derives from ProjectMixin will not be able to exists
without a project (delete-orphan case).

	Parameters

	project (Project) – A Project instance holding the project which this
object is related to. It can not be None, or anything other than a
Project instance.

	
__init__(project=None, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__([project])

	x.__init__(…) initializes x; see help(type(x)) for signature

Attributes

	ProjectMixin.project

	

	project_id

	

stalker.models.mixins.ReferenceMixin

[image: Inheritance diagram of stalker.models.mixins.ReferenceMixin]

	
class stalker.models.mixins.ReferenceMixin(references=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Adds reference capabilities to the mixed in class.

References are stalker.models.link.Link instances or anything
derived from it, which adds information to the attached objects. The aim of
the References are generally to give more info to direct the evolution of
the object.

	Parameters

	references (list of Link instances.) – A list of Link instances.

	
__init__(references=None, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__([references])

	x.__init__(…) initializes x; see help(type(x)) for signature

Attributes

	ReferenceMixin.references

	

stalker.models.mixins.ScheduleMixin

[image: Inheritance diagram of stalker.models.mixins.ScheduleMixin]

	
class stalker.models.mixins.ScheduleMixin(schedule_timing=None, schedule_unit=None, schedule_model=None, schedule_constraint=0, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Adds schedule info to the mixed in class.

Adds attributes like schedule_timing, schedule_unit and schedule_model
attributes to the mixed in class.

Use the __default_schedule_attr_name__ attribute to customize the
column names.

	
__init__(schedule_timing=None, schedule_unit=None, schedule_model=None, schedule_constraint=0, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__([schedule_timing, schedule_unit, …])

	x.__init__(…) initializes x; see help(type(x)) for signature

	least_meaningful_time_unit(seconds[, …])

	returns the least meaningful timing unit that corresponds to the given seconds.

	to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the schedule_model the value will differ.

Attributes

	defaults

	

	schedule_constraint

	

	schedule_model

	

	schedule_seconds

	Returns the schedule values as seconds, depending on to the schedule_model the value will differ.

	schedule_timing

	

	schedule_unit

	

	
classmethod least_meaningful_time_unit(seconds, as_work_time=True)

	returns the least meaningful timing unit that corresponds to the
given seconds. So if:

	as_work_time == True

	seconds % (1 years work time as seconds) == 0 –> ‘y’ else:
seconds % (1 month work time as seconds) == 0 –> ‘m’ else:
seconds % (1 week work time as seconds) == 0 –> ‘w’ else:
seconds % (1 day work time as seconds) == 0 –> ‘d’ else:
seconds % (1 hour work time as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes work time as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	as_work_time == False

	seconds % (1 years as seconds) == 0 –> ‘y’ else:
seconds % (1 month as seconds) == 0 –> ‘m’ else:
seconds % (1 week as seconds) == 0 –> ‘w’ else:
seconds % (1 day as seconds) == 0 –> ‘d’ else:
seconds % (1 hour as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	Parameters

	
	seconds (int [https://docs.python.org/3/library/functions.html#int]) – An integer showing the total seconds to be
converted.

	as_work_time (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the input be considered as work time
or calendar time.

	Returns int, string

	Returns one integer and one string, showing the
timing value and the unit.

	
schedule_seconds

	Returns the schedule values as seconds, depending on to the
schedule_model the value will differ. So if the schedule_model is
‘effort’ or ‘length’ then the schedule_time and schedule_unit values
are interpreted as work time, if the schedule_model is ‘duration’ then
the schedule_time and schedule_unit values are considered as calendar
time.

	
classmethod to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the
schedule_model the value will differ. So if the schedule_model is
‘effort’ or ‘length’ then the schedule_time and schedule_unit values
are interpreted as work time, if the schedule_model is ‘duration’ then
the schedule_time and schedule_unit values are considered as calendar
time.

stalker.models.mixins.StatusMixin

[image: Inheritance diagram of stalker.models.mixins.StatusMixin]

	
class stalker.models.mixins.StatusMixin(status=None, status_list=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Makes the mixed in object statusable.

This mixin adds status and status_list attributes to the mixed in class.
Any object that needs a status and a corresponding status list can include
this mixin.

When mixed with a class which don’t have an __init__ method, the mixin
supplies one, and in this case the parameters below must be defined.

	Parameters

	
	status_list – this attribute holds a status list object, which shows
the possible statuses that this entity could be in. This attribute can
not be empty or None. Giving a StatusList object, the
StatusList.target_entity_type should match the current class.

New in version 0.1.2.a4: The status_list argument now can be skipped or can be None if there
is an active database connection and there is a suitable
StatusList instance in the database whom
StatusList.target_entity_type attribute is set to the current
mixed-in class name.

	status – It is a Status instance which shows the current
status of the statusable object. Integer values are also accepted, which
shows the index of the desired status in the status_list attribute of
the current statusable object. If a Status instance is
supplied, it should also be present in the status_list attribute. If
set to None then the first Status instance in the
status_list will be used.

New in version 0.2.0: Status attribute as Status instance:

It is now possible to set the status of the instance by a
Status instance directly. And the StatusMixin.status
will return a proper Status instance.

	
__init__(status=None, status_list=None, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__([status, status_list])

	x.__init__(…) initializes x; see help(type(x)) for signature

Attributes

	status

	

	status_id

	

	status_list

	

	status_list_id

	

stalker.models.mixins.TargetEntityTypeMixin

[image: Inheritance diagram of stalker.models.mixins.TargetEntityTypeMixin]

	
class stalker.models.mixins.TargetEntityTypeMixin(target_entity_type=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Adds target_entity_type attribute to mixed in class.

	Parameters

	target_entity_type – The target entity type which this class is
designed for. Should be a class or a class name.

For example:

from stalker import SimpleEntity, TargetEntityTypeMixin, Project

class A(SimpleEntity, TargetEntityTypeMixin):
 __tablename__ = "As"
 __mapper_args__ = {"polymorphic_identity": "A"}

 def __init__(self, **kwargs):
 super(A, self).__init__(**kwargs)
 TargetEntityTypeMixin.__init__(self, **kwargs)

a_obj = A(target_entity_type=Project)

The a_obj will only be accepted by
Project instances. You can not assign it to any other class
which accepts a Type instance.

To control the mixed-in class behaviour add these class variables to the
mixed in class:

	__nullable_target__controls if the target_entity_type can be

	nullable or not. Default is False.

	__unique_target__controls if the target_entity_type should be

	unique, so there is only one object for one type.
Default is False.

	
__init__(target_entity_type=None, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__([target_entity_type])

	x.__init__(…) initializes x; see help(type(x)) for signature

Attributes

	target_entity_type

	

stalker.models.mixins.WorkingHoursMixin

[image: Inheritance diagram of stalker.models.mixins.WorkingHoursMixin]

	
class stalker.models.mixins.WorkingHoursMixin(working_hours=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Sets working hours for the mixed in class.

Generally is meaningful for users, departments and studio.

	Parameters

	working_hours – A WorkingHours instance showing the working
hours settings.

	
__init__(working_hours=None, **kwargs)

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__([working_hours])

	x.__init__(…) initializes x; see help(type(x)) for signature

Attributes

	working_hours

	

	working_hours_id

	

stalker.models.note.Note

[image: Inheritance diagram of stalker.models.note.Note]

	
class stalker.models.note.Note(content='', **kwargs)

	Bases: stalker.models.entity.SimpleEntity

Notes for any of the SOM objects.

To leave notes in Stalker use the Note class.

	Parameters

	
	content – the content of the note

	attached_to – The object that this note is attached to.

	
__init__(content='', **kwargs)

	

Methods

	__init__([content])

	

Attributes

	content

	The content of this Note instance.

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entities

	

	entity_groups

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	note_id

	

	plural_class_name

	the plural name of this class

	query

	

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
content

	The content of this Note instance.

Content is a string representing the content of this Note, can be an
empty.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
plural_class_name

	the plural name of this class

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.project.Project

[image: Inheritance diagram of stalker.models.project.Project]

	
class stalker.models.project.Project(name=None, code=None, clients=None, repositories=None, structure=None, image_format=None, fps=25.0, is_stereoscopic=False, users=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.ReferenceMixin, stalker.models.mixins.StatusMixin, stalker.models.mixins.DateRangeMixin, stalker.models.mixins.CodeMixin

All the information about a Project in Stalker is hold in this class.

Project is one of the main classes that will direct the others. A project
in Stalker is a gathering point.

It is mixed with ReferenceMixin, StatusMixin,
DateRangeMixin and CodeMixin to give reference, status,
schedule and code attribute. Please read the individual documentation of
each of the mixins.

Project Users

The Project.users attribute lists the users in this project. UIs
like task creation for example will only list these users as available
resources for this project.

TaskJuggler Integration

Stalker uses TaskJuggler for scheduling the project tasks. The
Project.to_tjp attribute generates a tjp compliant string which
includes the project definition, the tasks of the project, the resources in
the project including the vacation definitions and all the time logs
recorded for the project.

For custom attributes or directives that needs to be passed to TaskJuggler
you can use the Project.custom_tjp attribute which will be
attached to the generated tjp file (inside the “project” directive).

To manage all the studio projects at once (schedule them at once please use
Studio).

Repositories

New in version 0.2.13: Multiple Repositories per Project

Starting with v0.2.13 Project instances can have multiple Repositories,
which allows the project files to be placed in more than one repository
according to the need of the studio pipeline. One great advantage of
having multiple repositories is to be able to place Published versions
in to another repository which is placed on to a faster server.

Also the repositories attribute is not a read-only attribute
anymore.

Clients

New in version 0.2.15: Multiple Clients per Project

It is now possible to attach multiple Client instances to one
Project allowing to hold complex Projects to Client relations
by using the ProjectClient.role attribute of the
ProjectClient class.

Deleting a Project

Deleting a Project instance will cascade the delete operation to
all the Tasks related to that particular Project and it will
cascade the delete operation to TimeLogs, Versions,
Links and Reviews etc.. So one can delete a
Project instance without worrying about the non-project related
data like Users or Departments to be deleted.

	Parameters

	
	clients – The clients which the project is affiliated with. Default
value is an empty list.

	image_format (ImageFormat) – The output image format of the project. Default
value is None.

	fps (float [https://docs.python.org/3/library/functions.html#float]) – The FPS of the project, it should be a integer or float
number, or a string literal which can be correctly converted to a float.
Default value is 25.0.

	type (Type) – The type of the project. Default value is None.

	structure (Structure) – The structure of the project. Default value is None

	repositories – A list of Repository instances that the
project files are going to be stored in. You can not create a project
without specifying the repositories argument and passing a
Repository to it. Default value is None which raises a
TypeError.

	is_stereoscopic (bool [https://docs.python.org/3/library/functions.html#bool]) – a bool value, showing if the project is going
to be a stereo 3D project, anything given as the argument will be
converted to True or False. Default value is False.

	users – A list of Users holding the users in this
project. This will create a reduced or grouped list of studio workers and
will make it easier to define the resources for a Task related to this
project. The default value is an empty list.

	
__init__(name=None, code=None, clients=None, repositories=None, structure=None, image_format=None, fps=25.0, is_stereoscopic=False, users=None, **kwargs)

	

Methods

	__init__([name, code, clients, …])

	

	round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Attributes

	active

	

	assets

	returns the assets related to this project

	budgets

	

	client_role

	

	clients

	

	code

	The code name of this object.

	computed_duration

	returns the computed_duration as the difference of computed_start and computed_end if there are computed_start and computed_end otherwise returns None

	computed_end

	

	computed_start

	

	computed_total_seconds

	returns the duration as seconds

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	dailies

	

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	duration

	Duration of the entity.

	end

	The date that the entity should be delivered.

	entity_groups

	

	entity_id

	

	entity_type

	

	fps

	The fps of the project.

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	image_format

	The ImageFormat of this project.

	image_format_id

	

	is_active

	predicate for Project.active attribute

	is_stereoscopic

	True if the project is a stereoscopic project

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	open_tickets

	The list of open Tickets in this project.

	pages

	

	percent_complete

	returns the percent_complete based on the total_logged_seconds and schedule_seconds of the root tasks.

	plural_class_name

	the plural name of this class

	project_id

	

	query

	

	references

	A list of Link instances given as a reference for this entity.

	repositories

	

	repositories_proxy

	The Repository that this project files should reside.

	repository

	compatibility attribute for pre v0.2.13 systems.

	root_tasks

	returns a list of Tasks which have no parent

	scenes

	

	schedule_seconds

	returns an integer showing the total amount of schedule timing of the in child tasks in seconds

	sequences

	returns the sequences related to this project

	shots

	returns the shots related to this project

	start

	The date that this entity should start.

	status

	The current status of the object.

	status_id

	

	status_list

	

	status_list_id

	

	structure

	The structure of the project.

	structure_id

	

	tags

	A list of tags attached to this object.

	tasks

	

	thumbnail

	

	thumbnail_id

	

	tickets

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	returns a TaskJuggler compatible string representing this project

	total_logged_seconds

	returns an integer representing the total TimeLog seconds recorded in child tasks.

	total_seconds

	returns the duration as seconds

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	user_role

	

	users

	

	
assets

	returns the assets related to this project

	
code

	The code name of this object.

It accepts strings. Can not be None.

	
computed_duration

	returns the computed_duration as the difference of computed_start
and computed_end if there are computed_start and computed_end otherwise
returns None

	
computed_total_seconds

	returns the duration as seconds

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
duration

	Duration of the entity.

It is a datetime.timedelta instance. Showing the difference of
the start and the end. If edited it changes
the end attribute value.

	
end

	The date that the entity should be delivered.

The end can be set to a datetime.timedelta and in this case it will be
calculated as an offset from the start and converted to
datetime.datetime again. Setting the start to a date passing the end
will also set the end, so the timedelta between them is preserved,
default value is 10 days

	
fps

	The fps of the project.

It is a float value, any other types will be converted to float. The
default value is 25.0.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
image_format

	The ImageFormat of this project.

This value defines the output image format of the project, should be an
instance of ImageFormat.

	
is_active

	predicate for Project.active attribute

	
is_stereoscopic

	True if the project is a stereoscopic project

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
open_tickets

	The list of open Tickets in this project.

returns a list of Ticket instances which has a status of
Open and created in this project.

	
percent_complete

	returns the percent_complete based on the total_logged_seconds and
schedule_seconds of the root tasks.

	
plural_class_name

	the plural name of this class

	
references

	A list of Link instances given as a reference for
this entity.

	
repositories_proxy

	The Repository that this project files should reside.

Should be a list of Repositoryinstances.

	
repository

	compatibility attribute for pre v0.2.13 systems. Returns the first
repository instance in the project.repositories attribute if there is
any or None

	
root_tasks

	returns a list of Tasks which have no parent

	
classmethod round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Uses stalker.defaults.timing_resolution as the closest number
of seconds to round to.

	Parameters

	dt (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – datetime.datetime object, defaults to now.

Based on Thierry Husson’s answer in Stackoverflow

Stackoverflow : http://stackoverflow.com/a/10854034/1431079

	
schedule_seconds

	returns an integer showing the total amount of schedule timing of
the in child tasks in seconds

	
sequences

	returns the sequences related to this project

	
shots

	returns the shots related to this project

	
start

	The date that this entity should start.

Also effects the DateRangeMixin.end attribute value in certain
conditions, if the DateRangeMixin.start is set to a time
passing the DateRangeMixin.end it will also offset the
DateRangeMixin.end to keep the
DateRangeMixin.duration value fixed.
DateRangeMixin.start should be an instance of
class:datetime.datetime and the default value is
datetime.datetime.now(pytz.utc)()

	
status

	The current status of the object.

It is a Status instance which
is one of the Statuses stored in the status_list attribute
of this object.

	
structure

	The structure of the project. Should be an instance of
Structure class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	returns a TaskJuggler compatible string representing this project

	
total_logged_seconds

	returns an integer representing the total TimeLog seconds recorded
in child tasks.

	
total_seconds

	returns the duration as seconds

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.project.ProjectClient

[image: Inheritance diagram of stalker.models.project.ProjectClient]

	
class stalker.models.project.ProjectClient(project=None, client=None, role=None)

	Bases: sqlalchemy.ext.declarative.api.Base

The association object used in Client-to-Project relation

	
__init__(project=None, client=None, role=None)

	

Methods

	__init__([project, client, role])

	

Attributes

	client

	

	client_id

	

	metadata

	

	plural_class_name

	the plural name of this class

	project

	

	project_id

	

	query

	

	role

	

	role_id

	

	
plural_class_name

	the plural name of this class

stalker.models.project.ProjectRepository

[image: Inheritance diagram of stalker.models.project.ProjectRepository]

	
class stalker.models.project.ProjectRepository(project=None, repository=None, position=None)

	Bases: sqlalchemy.ext.declarative.api.Base

The association object for Project to Repository instances

	
__init__(project=None, repository=None, position=None)

	

Methods

	__init__([project, repository, position])

	

Attributes

	metadata

	

	plural_class_name

	the plural name of this class

	position

	

	project

	

	project_id

	

	query

	

	repository

	

	repository_id

	

	
plural_class_name

	the plural name of this class

stalker.models.project.ProjectUser

[image: Inheritance diagram of stalker.models.project.ProjectUser]

	
class stalker.models.project.ProjectUser(project=None, user=None, role=None)

	Bases: sqlalchemy.ext.declarative.api.Base

The association object used in User-to-Project relation

	
__init__(project=None, user=None, role=None)

	

Methods

	__init__([project, user, role])

	

Attributes

	metadata

	

	plural_class_name

	the plural name of this class

	project

	

	project_id

	

	query

	

	rate

	

	role

	

	role_id

	

	user

	

	user_id

	

	
plural_class_name

	the plural name of this class

stalker.models.repository.Repository

[image: Inheritance diagram of stalker.models.repository.Repository]

	
class stalker.models.repository.Repository(code='', linux_path='', windows_path='', osx_path='', **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.CodeMixin

Manages fileserver/repository related data.

A repository is a network share that all users have access to.

A studio can create several repositories, for example, one for movie
projects and one for commercial projects.

A repository also defines the default paths for linux, windows and mac
foreshores.

The path separator in the repository is always forward slashes (“/”).
Setting a path that contains backward slashes (“”), will be converted to
a path with forward slashes.

New in version 0.2.24: Code attribute

Starting with v0.2.24 Repository instances have a new code
attribute whose value is used by the
stalker.models.studio.Studio to generate environment variables
that contains the path of this
stalker.models.repository.Repository (i.e.
$REPOCP/path/to/asset.ma CP here is the Repository.code) so that
instead of using absolute full paths one can use the
make_relative` path to generate a universal path that can be
used across OSes and different installations of Stalker.

	Parameters

	
	code – The code of the stalker.models.repository.Repository.
This attribute value is used by the stalker.models.studio.Studio
to generate environment variables that contains the path of this
Repository (i.e. $REPOCP/path/to/asset.ma) so that instead of using
absolute full paths one can use the repository_relative path to
generate a universal path that can be used across OSes and different
installations of Stalker.

	linux_path – shows the linux path of the repository root, should be a
string

	osx_path – shows the mac osx path of the repository root, should be a
string

	windows_path – shows the windows path of the repository root, should
be a string

	
__init__(code='', linux_path='', windows_path='', osx_path='', **kwargs)

	

Methods

	__init__([code, linux_path, windows_path, …])

	

	find_repo(path)

	returns the repository from the given path

	is_in_repo(path)

	Returns True or False depending of the given is in this repo or not

	make_relative(path)

	makes the given path relative to the repository root

	to_linux_path(path)

	Returns the linux version of the given path

	to_native_path(path)

	Returns the native version of the given path

	to_os_independent_path(path)

	Replaces the part of the given path with repository environment variable which makes the given path OS independent.

	to_osx_path(path)

	Returns the osx version of the given path

	to_windows_path(path)

	Returns the windows version of the given path

Attributes

	code

	The code name of this object.

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	env_var

	returns the env var of this repo

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	linux_path

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	osx_path

	

	path

	Returns the path for the current os

	plural_class_name

	the plural name of this class

	query

	

	repository_id

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	windows_path

	

	
code

	The code name of this object.

It accepts strings. Can not be None.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
env_var

	returns the env var of this repo

	
classmethod find_repo(path)

	returns the repository from the given path

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path in a repository

	Returns

	stalker.models.repository.Repository

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
is_in_repo(path)

	Returns True or False depending of the given is in this repo or not

	Parameters

	path – The path to be investigated

	Returns

	

	
make_relative(path)

	makes the given path relative to the repository root

	Parameters

	path – The path to be made relative

	Returns

	str

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
path

	Returns the path for the current os

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_linux_path(path)

	Returns the linux version of the given path

	Parameters

	path – The path that needs to be converted to linux path.

	Returns

	

	
to_native_path(path)

	Returns the native version of the given path

	Parameters

	path – The path that needs to be converted to native path.

	Returns

	

	
classmethod to_os_independent_path(path)

	Replaces the part of the given path with repository environment
variable which makes the given path OS independent.

	Parameters

	path – path to make OS independent

	Returns

	

	
to_osx_path(path)

	Returns the osx version of the given path

	Parameters

	path – The path that needs to be converted to osx path.

	Returns

	

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
to_windows_path(path)

	Returns the windows version of the given path

	Parameters

	path – The path that needs to be converted to windows path.

	Returns

	

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.review.Review

[image: Inheritance diagram of stalker.models.review.Review]

	
class stalker.models.review.Review(task=None, reviewer=None, description='', **kwargs)

	Bases: stalker.models.entity.SimpleEntity, stalker.models.mixins.ScheduleMixin, stalker.models.mixins.StatusMixin

Manages the Task Review Workflow.

This class represents a very important part of the review workflow. For
more information about the workflow please read the documentation about the
Stalker Task Review Workflow.

According to the workflow, Review instances holds information about what
have the responsible of the task requested about the task when the resource
requested a review from the responsible.

Each Review instance with the same review_number for a
Task represents a set of reviews.

Creating a review will automatically cap the schedule timing value of the
related task to the total logged time logs for that task and then extend
the timing values according to the review schedule values.

	Parameters

	
	task (Task) – A Task instance that this review is related to. It
can not be skipped.

	review_number (int [https://docs.python.org/3/library/functions.html#int]) – This number represents the revision set id
that this Review instance belongs to.

	reviewer (User) – One of the responsible of the related Task. There will be
only one Review instances with the same review_number for every
responsible of the same Task.

	schedule_timing – Holds the timing value of this review. It is a
float value. Only useful if it is a review which ends up requesting a
revision.

	schedule_unit – Holds the timing unit of this review. Only useful if
it is a review which ends up requesting a revision.

	schedule_model – It holds the schedule model of this review. Only
useful if it is a review which ends up requesting a revision.

	
__init__(task=None, reviewer=None, description='', **kwargs)

	

Methods

	__init__([task, reviewer, description])

	

	approve()

	Finalizes the review by approving the task

	finalize_review_set()

	finalizes the current review set Review decisions

	is_finalized()

	A predicate method that checks if all reviews in the same set with this one is finalized

	least_meaningful_time_unit(seconds[, …])

	returns the least meaningful timing unit that corresponds to the given seconds.

	request_revision([schedule_timing, …])

	Finalizes the review by requesting a revision

	to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the schedule_model the value will differ.

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	defaults

	

	description

	Description of this object.

	entity_groups

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	plural_class_name

	the plural name of this class

	query

	

	review_id

	

	review_number

	returns the _review_number attribute value

	review_set

	returns the Review instances in the same review set

	reviewer

	

	reviewer_id

	The User which does the review, also on of the responsible of the related Task

	schedule_constraint

	An integer number showing the constraint schema for this task.

	schedule_model

	Defines the schedule model which is going to be used by TaskJuggler while scheduling this Task.

	schedule_seconds

	Returns the schedule values as seconds, depending on to the schedule_model the value will differ.

	schedule_timing

	It is the value of the schedule timing.

	schedule_unit

	It is the unit of the schedule timing.

	status

	The current status of the object.

	status_id

	

	status_list

	

	status_list_id

	

	task

	The Task instance that this Review is created for

	task_id

	The id of the related task.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
approve()

	Finalizes the review by approving the task

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
finalize_review_set()

	finalizes the current review set Review decisions

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
is_finalized()

	A predicate method that checks if all reviews in the same set with
this one is finalized

	
classmethod least_meaningful_time_unit(seconds, as_work_time=True)

	returns the least meaningful timing unit that corresponds to the
given seconds. So if:

	as_work_time == True

	seconds % (1 years work time as seconds) == 0 –> ‘y’ else:
seconds % (1 month work time as seconds) == 0 –> ‘m’ else:
seconds % (1 week work time as seconds) == 0 –> ‘w’ else:
seconds % (1 day work time as seconds) == 0 –> ‘d’ else:
seconds % (1 hour work time as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes work time as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	as_work_time == False

	seconds % (1 years as seconds) == 0 –> ‘y’ else:
seconds % (1 month as seconds) == 0 –> ‘m’ else:
seconds % (1 week as seconds) == 0 –> ‘w’ else:
seconds % (1 day as seconds) == 0 –> ‘d’ else:
seconds % (1 hour as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	Parameters

	
	seconds (int [https://docs.python.org/3/library/functions.html#int]) – An integer showing the total seconds to be
converted.

	as_work_time (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the input be considered as work time
or calendar time.

	Returns int, string

	Returns one integer and one string, showing the
timing value and the unit.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
plural_class_name

	the plural name of this class

	
request_revision(schedule_timing=1, schedule_unit='h', description='')

	Finalizes the review by requesting a revision

	
review_number

	returns the _review_number attribute value

	
review_set

	returns the Review instances in the same review set

	
reviewer_id

	The User which does the review, also on of the responsible of the related Task

	
schedule_constraint

	An integer number showing the constraint schema for this
task.

Possible values are:

	0

	Constrain None

	1

	Constrain Start

	2

	Constrain End

	3

	Constrain Both

For convenience use stalker.models.task.CONSTRAIN_NONE,
stalker.models.task.CONSTRAIN_START,
stalker.models.task.CONSTRAIN_END,
stalker.models.task.CONSTRAIN_BOTH.

This value is going to be used to constrain the start and end date
values of this task. So if you want to pin the start of a task to a
certain date. Set its schedule_constraint value to
CONSTRAIN_START. When the task is scheduled by TaskJuggler
the start date will be pinned to the start attribute of
this task.

And if both of the date values (start and end) wanted to be pinned
to certain dates (making the task effectively a duration task)
set the desired start and end and then set the
schedule_constraint to CONSTRAIN_BOTH.

	
schedule_model

	Defines the schedule model which is going to be used by
TaskJuggler while scheduling this Task. It has three possible
values; effort, duration, length. effort is the
default value. Each value causes this task to be scheduled in
different ways:

	effort

	If the schedule_model attribute is set to
“effort” then the start and end date values are
calculated so that a resource should spent this much of
work time to complete a Task. For example, a task with
schedule_timing of 4 days, needs 4 working days.
So it can take 4 working days to complete the Task, but it
doesn’t mean that the task duration will be 4 days. If the
resource works overtime then the task will be finished
before 4 days or if the resource will not be available
(due to a vacation) then the task duration can be much
more.

	duration

	The duration of the task will exactly be equal to
schedule_timing regardless of the resource
availability. So the difference between start
and end attribute values are equal to
schedule_timing. Essentially making the task
duration in calendar days instead of working days.

	length

	In this model the duration of the task will exactly be
equal to the given length value in working days regardless
of the resource availability. So a task with the
schedule_timing is set to 4 days will be
completed in 4 working days. But again it will not be
always 4 calendar days due to the weekends or non working
days.

	
schedule_seconds

	Returns the schedule values as seconds, depending on to the
schedule_model the value will differ. So if the schedule_model is
‘effort’ or ‘length’ then the schedule_time and schedule_unit values
are interpreted as work time, if the schedule_model is ‘duration’ then
the schedule_time and schedule_unit values are considered as calendar
time.

	
schedule_timing

	It is the value of the schedule timing. It is a float
value.

The timing value can either be as Work Time or Calendar Time
defined by the schedule_model attribute. So when the schedule_model
is duration then the value of this attribute is in Calendar Time,
and if the schedule_model is either length or effort then the
value is considered as Work Time.

	
schedule_unit

	It is the unit of the schedule timing. It is a string
value. And should be one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	
status

	The current status of the object.

It is a Status instance which
is one of the Statuses stored in the status_list attribute
of this object.

	
task

	The Task instance that this Review is created for

	
task_id

	The id of the related task.

	
tjp_id

	returns TaskJuggler compatible id

	
classmethod to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the
schedule_model the value will differ. So if the schedule_model is
‘effort’ or ‘length’ then the schedule_time and schedule_unit values
are interpreted as work time, if the schedule_model is ‘duration’ then
the schedule_time and schedule_unit values are considered as calendar
time.

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.review.Daily

[image: Inheritance diagram of stalker.models.review.Daily]

	
class stalker.models.review.Daily(links=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.StatusMixin, stalker.models.mixins.ProjectMixin

Manages data related to Dailies.

Dailies are sessions where outputs of a group of tasks are reviewed all
together by the resources and responsible of those tasks.

The main purpose of a Daily is to gather a group of Link
instances and introduce a simple way of presenting them as a group.

Notes created during a Daily session can be directly stored
both in the Link and the Daily instances and a join
will reveal which Note is created in which Daily.

	
__init__(links=None, **kwargs)

	

Methods

	__init__([links])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	daily_id

	

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	link_relations

	

	links

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	project

	The Project instance that this object belongs to.

	project_id

	

	query

	

	status

	The current status of the object.

	status_id

	

	status_list

	

	status_list_id

	

	tags

	A list of tags attached to this object.

	tasks

	returns a list of Task instances that this Daily is related to (through the outputs of the versions)

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	versions

	returns a list of Version instances that this Daily is related to (through the outputs of the versions)

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
project

	The Project instance that
this object belongs to.

	
status

	The current status of the object.

It is a Status instance which
is one of the Statuses stored in the status_list attribute
of this object.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tasks

	returns a list of Task instances that this Daily is
related to (through the outputs of the versions)

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
versions

	returns a list of Version instances that this Daily is
related to (through the outputs of the versions)

stalker.models.review.DailyLink

[image: Inheritance diagram of stalker.models.review.DailyLink]

	
class stalker.models.review.DailyLink(daily=None, link=None, rank=0)

	Bases: sqlalchemy.ext.declarative.api.Base

The association object used in Daily-to-Link relation

	
__init__(daily=None, link=None, rank=0)

	

Methods

	__init__([daily, link, rank])

	

Attributes

	daily

	

	daily_id

	

	link

	stalker.models.link.Link instances related to the Daily instance.

	link_id

	

	metadata

	

	plural_class_name

	the plural name of this class

	query

	

	rank

	

	
link

	stalker.models.link.Link instances related to the Daily
instance.

Attach the same Links that are linked as an output to a
certain Versions instance to this attribute.

This attribute is an association_proxy so and the real attribute
that the data is related to is the link_relations attribute.

You can use the link_relations attribute to change the
rank attribute of the DailyLink instance (which is the
returned data), thus change the order of the Links.

This is done in that way to be able to store the order of the links in
this Daily instance.

	
plural_class_name

	the plural name of this class

stalker.models.scene.Scene

[image: Inheritance diagram of stalker.models.scene.Scene]

	
class stalker.models.scene.Scene(shots=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.ProjectMixin, stalker.models.mixins.CodeMixin

Stores data about Scenes.

Scenes are grouping the Shots according to their view to the world, that is
shots taking place in the same set configuration can be grouped together by
using Scenes.

You can not replace Sequences with Scenes, because Scene
instances doesn’t have some key features that Sequences have.

A Scene needs to be tied to a Project
instance, so it is not possible to create a Scene without a one.

	
__init__(shots=None, **kwargs)

	

Methods

	__init__([shots])

	

Attributes

	code

	The code name of this object.

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	project

	The Project instance that this object belongs to.

	project_id

	

	query

	

	scene_id

	

	shots

	The Shots that is related with this Scene.

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
code

	The code name of this object.

It accepts strings. Can not be None.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
project

	The Project instance that
this object belongs to.

	
shots

	The Shots that is related with this Scene.

It is a list of Shot instances.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.schedulers.SchedulerBase

[image: Inheritance diagram of stalker.models.schedulers.SchedulerBase]

	
class stalker.models.schedulers.SchedulerBase(studio=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This is the base class for schedulers.

All the schedulers should be derived from this class.

	
__init__(studio=None)

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__([studio])

	x.__init__(…) initializes x; see help(type(x)) for signature

	schedule()

	the main scheduling function should be implemented in the derivatives

Attributes

	studio

	studio getter

	
schedule()

	the main scheduling function should be implemented in the
derivatives

	
studio

	studio getter

stalker.models.schedulers.TaskJugglerScheduler

[image: Inheritance diagram of stalker.models.schedulers.TaskJugglerScheduler]

	
class stalker.models.schedulers.TaskJugglerScheduler(studio=None, compute_resources=False, parsing_method=0, projects=None)

	Bases: stalker.models.schedulers.SchedulerBase

This is the main scheduler for Stalker right now.

This class prepares the data for TaskJuggler and let it solve the
scheduling problem, and then retrieves the solved date and resource data
back.

TaskJugglerScheduler needs a Studio instance to work with, it
will create a .tjp file and then solve the tasks and restore the
computed_start and computed_end dates and the computed_resources
attributes for each task.

Stalker will pass all its data to TaskJuggler by creating a tjp file that
TaskJuggler can parse. This tjp file has all the Projects, Tasks, Users,
Departments, TimeLogs, Vacations and everything that TJ need for solving
the tasks. With every new version of it, Stalker tries to cover more and
more TaskJuggler directives.

Note

New in version 0.2.5: Alternative Resources

Stalker is now able to pass alternative resources to TaskJuggler.
Although, per resource alternatives are not yet possible, it will be
implemented in future versions of Stalker.

Note

New in version 0.2.5: Task Dependency Relation Attributes

Stalker now can use ‘gapduration’, ‘gaplength’, ‘onstart’ and ‘onend’
TaskJuggler directives for each dependent task of a task. Use the
TaskDependency instance in Task.task_dependency attribute to control how
a particular task is depending to another task.

Warning

Task.computed_resources Attribute Content

After the scheduling is finished, TaskJuggler will create a csv
report that TaskJugglerScheduler will parse. This csv file contains the
id, start date, end date and resources data. The
resources reported back by TJ will be stored in
Task.computed_resources attribute.

TaskJuggler will put all the resources who may have entered a
TimeLog previously to the csv file. But the resources from the
csv file may not be in Task.resources or
Task.alternative_resources anymore. Because of that,
TaskJugglerScheduler will only store the resources those are both in csv
file and in Task.resources or
Task.alternative_resources attributes.

Stalker will export each Project to tjp as the highest task in the
hierarchy and all the projects will be combined in to the same tjp file.
Combining all the Projects in one tjp file has a very nice side effect,
projects using the same resources will respect their allocations to the
resource. So that when a TaskJugglerScheduler instance is used to schedule
the project, all projects are scheduled together.

The following table shows which Stalker data type is converted to which
TaskJuggler type:

	Stalker

	TaskJuggler

	Studio

	Project

	Project

	Task

	Task

	Task

	Asset

	Task

	Shot

	Task

	Sequence

	Task

	Departmemt

	Resource

	User

	Resource

	TimeLog

	Booking

	Vacation

	Vacation

	Parameters

	
	compute_resources (bool [https://docs.python.org/3/library/functions.html#bool]) – When set to True it will also consider
Task.alternative_resources attribute and will fill
Task.computed_resources attribute for each Task. With
TaskJugglerScheduler when the total number of Task is around
15k it will take around 7 minutes to generate this data, so by default it
is False.

	parsing_method (int [https://docs.python.org/3/library/functions.html#int]) – Choose between SQL (0) or Pure Python (1)
parsing. The default is SQL.

	
__init__(studio=None, compute_resources=False, parsing_method=0, projects=None)

	x.__init__(…) initializes x; see help(type(x)) for signature

Methods

	__init__([studio, compute_resources, …])

	x.__init__(…) initializes x; see help(type(x)) for signature

	schedule()

	Does the scheduling.

Attributes

	projects

	getter for the _project attribute

	studio

	studio getter

	
projects

	getter for the _project attribute

	
schedule()

	Does the scheduling.

	
studio

	studio getter

stalker.models.sequence.Sequence

[image: Inheritance diagram of stalker.models.sequence.Sequence]

	
class stalker.models.sequence.Sequence(**kwargs)

	Bases: stalker.models.task.Task, stalker.models.mixins.CodeMixin

Stores data about Sequences.

Sequences are a way of grouping the Shots according to their temporal
position to each other.

Initialization

Warning

Deprecated since version 0.2.0.

Sequences do not have a lead anymore. Use the Task.responsible
attribute of the super (Task).

	
__init__(**kwargs)

	

Methods

	__init__(**kwargs)

	

	create_time_log(resource, start, end)

	A helper method to create TimeLogs, this will ease creating TimeLog instances for task.

	hold()

	Pauses the execution of this task by setting its status to OH.

	least_meaningful_time_unit(seconds[, …])

	returns the least meaningful timing unit that corresponds to the given seconds.

	request_review()

	Creates and returns Review instances for each of the responsible of this task and sets the task status to PREV.

	request_revision([reviewer, description, …])

	Requests revision.

	resume()

	Resumes the execution of this task by setting its status to RTS or WIP depending to its time_logs attribute, so if it has TimeLogs then it will resume as WIP and if it doesn’t then it will resume as RTS.

	review_set([review_number])

	returns the reviews with the given review_number, if review_number is skipped it will return the latest set of reviews

	round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

	stop()

	Stops this task.

	to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the schedule_model the value will differ.

	update_parent_statuses()

	updates the parent statuses of this task if any

	update_schedule_info()

	updates the total_logged_seconds and schedule_seconds attributes by using the children info and triggers an update on every children

	update_status_with_children_statuses()

	updates the task status according to its children statuses

	update_status_with_dependent_statuses([removing])

	updates the status by looking at the dependent tasks

	walk_dependencies([method])

	Walks the dependencies of this task

	walk_hierarchy([method])

	Walks the hierarchy of this task.

Attributes

	absolute_path

	the absolute_path attribute

	allocation_strategy

	Please read Task class documentation for details.

	alternative_resources

	The list of Users assigned to this Task as an alternative resource.

	bid_timing

	The value of the initial bid of this Task.

	bid_unit

	The unit of the initial bid of this Task.

	children

	Other Budget instances which are the children of this one.

	code

	The code name of this object.

	computed_duration

	returns the computed_duration as the difference of computed_start and computed_end if there are computed_start and computed_end otherwise returns None

	computed_end

	

	computed_resources

	getter for the _computed_resources attribute

	computed_start

	

	computed_total_seconds

	returns the duration as seconds

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	defaults

	

	dependent_of

	

	depends

	

	description

	Description of this object.

	duration

	Duration of the entity.

	end

	overridden end getter

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	good

	

	good_id

	

	html_class

	

	html_style

	

	id

	

	is_container

	Returns True if the Task has children Tasks

	is_leaf

	Returns True if the Task has no children Tasks

	is_milestone

	Specifies if this Task is a milestone.

	is_root

	Returns True if the Task has no parent

	is_scheduled

	A predicate which returns True if this task has both a computed_start and computed_end values

	level

	Returns the level of this task.

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	open_tickets

	returns the open tickets referencing this task in their links attribute

	parent

	A Task instance which is the parent of this Task.

	parent_id

	

	parents

	Returns all of the parents of this mixed in class starting from the root

	path

	The path attribute will generate a path suitable for placing the files under it.

	percent_complete

	returns the percent_complete based on the total_logged_seconds and schedule_seconds of the task.

	persistent_allocation

	Please read Task class documentation for details.

	plural_class_name

	the plural name of this class

	priority

	An integer number between 0 and 1000 used by TaskJuggler to determine the priority of this Task.

	project

	The owner Project of this task.

	project_id

	The id of the owner Project of this Task.

	query

	

	references

	A list of Link instances given as a reference for this entity.

	remaining_seconds

	returns the remaining amount of efforts, length or duration left in this Task as seconds.

	resources

	The list of Users assigned to this Task.

	responsible

	The responsible of this task.

	review_number

	returns the _review_number attribute value

	reviews

	A list of Review holding the details about the reviews created for this task.

	schedule_constraint

	An integer number showing the constraint schema for this task.

	schedule_model

	Defines the schedule model which is going to be used by TaskJuggler while scheduling this Task.

	schedule_seconds

	returns the total effort, length or duration in seconds, for completeness calculation

	schedule_timing

	It is the value of the schedule timing.

	schedule_unit

	It is the unit of the schedule timing.

	sequence_id

	

	shots

	The Shots assigned to this Sequence.

	start

	overridden start getter

	status

	The current status of the object.

	status_id

	

	status_list

	

	status_list_id

	

	tags

	A list of tags attached to this object.

	task_dependent_of

	A list of Tasks that this one is being depended by.

	task_depends_to

	A list of Tasks that this one is depending on.

	task_id

	The primary_key attribute for the Tasks table used by SQLAlchemy to map this Task in relationships.

	tasks

	A synonym for the children attribute used by the descendants of the Task class (currently Asset, Shot and Sequence classes).

	thumbnail

	

	thumbnail_id

	

	tickets

	returns the tickets referencing this task in their links attribute

	time_logs

	A list of TimeLog instances showing who and when has spent how much effort on this task.

	tjp_abs_id

	returns the calculated absolute id of this task

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	TaskJuggler representation of this task

	total_logged_seconds

	The total effort spent for this Task.

	total_seconds

	returns the duration as seconds

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	versions

	A list of Version instances showing the files created for this task.

	watchers

	The list of Users watching this Task.

	
absolute_path

	the absolute_path attribute

	
allocation_strategy

	Please read Task class documentation for details.

	
alternative_resources

	The list of Users assigned to this Task as an alternative resource.

	
bid_timing

	The value of the initial bid of this Task. It is an integer or
a float.

	
bid_unit

	The unit of the initial bid of this Task. It is a string value.
And should be one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	
children

	Other Budget instances which are the children of this
one. This attribute along with the parent attribute is used in
creating a DAG hierarchy of tasks.

	
code

	The code name of this object.

It accepts strings. Can not be None.

	
computed_duration

	returns the computed_duration as the difference of computed_start
and computed_end if there are computed_start and computed_end otherwise
returns None

	
computed_resources

	getter for the _computed_resources attribute

	
computed_total_seconds

	returns the duration as seconds

	
create_time_log(resource, start, end)

	A helper method to create TimeLogs, this will ease creating TimeLog
instances for task.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
duration

	Duration of the entity.

It is a datetime.timedelta instance. Showing the difference of
the start and the end. If edited it changes
the end attribute value.

	
end

	overridden end getter

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
hold()

	Pauses the execution of this task by setting its status to OH. Only
applicable to RTS and WIP tasks, any task with other statuses will
raise a ValueError.

	
is_container

	Returns True if the Task has children Tasks

	
is_leaf

	Returns True if the Task has no children Tasks

	
is_milestone

	Specifies if this Task is a milestone.

Milestones doesn’t need any duration, any effort and any resources. It
is used to create meaningful dependencies between the critical stages
of the project.

	
is_root

	Returns True if the Task has no parent

	
is_scheduled

	A predicate which returns True if this task has both a
computed_start and computed_end values

	
classmethod least_meaningful_time_unit(seconds, as_work_time=True)

	returns the least meaningful timing unit that corresponds to the
given seconds. So if:

	as_work_time == True

	seconds % (1 years work time as seconds) == 0 –> ‘y’ else:
seconds % (1 month work time as seconds) == 0 –> ‘m’ else:
seconds % (1 week work time as seconds) == 0 –> ‘w’ else:
seconds % (1 day work time as seconds) == 0 –> ‘d’ else:
seconds % (1 hour work time as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes work time as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	as_work_time == False

	seconds % (1 years as seconds) == 0 –> ‘y’ else:
seconds % (1 month as seconds) == 0 –> ‘m’ else:
seconds % (1 week as seconds) == 0 –> ‘w’ else:
seconds % (1 day as seconds) == 0 –> ‘d’ else:
seconds % (1 hour as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	Parameters

	
	seconds (int [https://docs.python.org/3/library/functions.html#int]) – An integer showing the total seconds to be
converted.

	as_work_time (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the input be considered as work time
or calendar time.

	Returns int, string

	Returns one integer and one string, showing the
timing value and the unit.

	
level

	Returns the level of this task. It is a temporary property and will
be useless when Stalker has its own implementation of a proper Gantt
Chart. Write now it is used by the jQueryGantt.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
open_tickets

	returns the open tickets referencing this task in their links
attribute

	
parent

	A Task instance which is the parent of this Task.
In Stalker it is possible to create a hierarchy of Task.

	
parents

	Returns all of the parents of this mixed in class starting from the
root

	
path

	The path attribute will generate a path suitable for placing the
files under it. It will use the FilenameTemplate class
related to the Project Structure with the
target_entity_type is set to the type of this instance.

	
percent_complete

	returns the percent_complete based on the total_logged_seconds and
schedule_seconds of the task. Container tasks will use info from their
children

	
persistent_allocation

	Please read Task class documentation for details.

	
plural_class_name

	the plural name of this class

	
priority

	An integer number between 0 and 1000 used by TaskJuggler to
determine the priority of this Task. The default value is 500.

	
project

	The owner Project of this task.

It is a read-only attribute. It is not possible to change the owner
Project of a Task it is defined when the Task is created.

	
project_id

	The id of the owner Project of this Task. This
attribute is mainly used by SQLAlchemy to map a Project
instance to a Task.

	
references

	A list of Link instances given as a reference for
this entity.

	
remaining_seconds

	returns the remaining amount of efforts, length or duration left
in this Task as seconds.

	
request_review()

	Creates and returns Review instances for each of the responsible of
this task and sets the task status to PREV.

New in version 0.2.0: Request review will not cap the timing of this task anymore.

Only applicable to leaf tasks.

	
request_revision(reviewer=None, description='', schedule_timing=1, schedule_unit='h')

	Requests revision.

Applicable to PREV or CMPL leaf tasks. This method will expand the
schedule timings of the task according to the supplied arguments.

When request_revision is called on a PREV task, the other NEW Review
instances (those created when request_review on a WIP task is called
and still waiting a review) will be deleted.

This method at the end will return a new Review instance with correct
attributes (reviewer, description, schedule_timing, schedule_unit and
review_number attributes).

	Parameters

	
	reviewer (class:.User) – This is the user that requested the revision. He/she
doesn’t need to be the responsible, anybody that has a Permission to
create a Review instance can request a revision.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – The description of the requested revision.

	schedule_timing (int [https://docs.python.org/3/library/functions.html#int]) – The timing value of the requested revision.
The task will be extended this much of duration. Works along with the
schedule_unit parameter. The default value is 1.

	schedule_unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – The timin unit value of the requested
revision. The task will be extended this much of duration. Works
along with the schedule_timing parameter. The default value is
‘h’ for ‘hour’.

	
resources

	The list of Users assigned to this Task.

	
responsible

	The responsible of this task.

This attribute will return the responsible of this task which is a
list of User instances. If there is no responsible set
for this task, then it will try to find a responsible in its
parents.

	
resume()

	Resumes the execution of this task by setting its status to RTS or
WIP depending to its time_logs attribute, so if it has TimeLogs then it
will resume as WIP and if it doesn’t then it will resume as RTS. Only
applicable to Tasks with status OH.

	
review_number

	returns the _review_number attribute value

	
review_set(review_number=None)

	returns the reviews with the given review_number, if review_number
is skipped it will return the latest set of reviews

	
reviews

	A list of Review holding the details about the reviews
created for this task.

	
classmethod round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Uses stalker.defaults.timing_resolution as the closest number
of seconds to round to.

	Parameters

	dt (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – datetime.datetime object, defaults to now.

Based on Thierry Husson’s answer in Stackoverflow

Stackoverflow : http://stackoverflow.com/a/10854034/1431079

	
schedule_constraint

	An integer number showing the constraint schema for this
task.

Possible values are:

	0

	Constrain None

	1

	Constrain Start

	2

	Constrain End

	3

	Constrain Both

For convenience use stalker.models.task.CONSTRAIN_NONE,
stalker.models.task.CONSTRAIN_START,
stalker.models.task.CONSTRAIN_END,
stalker.models.task.CONSTRAIN_BOTH.

This value is going to be used to constrain the start and end date
values of this task. So if you want to pin the start of a task to a
certain date. Set its schedule_constraint value to
CONSTRAIN_START. When the task is scheduled by TaskJuggler
the start date will be pinned to the start attribute of
this task.

And if both of the date values (start and end) wanted to be pinned
to certain dates (making the task effectively a duration task)
set the desired start and end and then set the
schedule_constraint to CONSTRAIN_BOTH.

	
schedule_model

	Defines the schedule model which is going to be used by
TaskJuggler while scheduling this Task. It has three possible
values; effort, duration, length. effort is the
default value. Each value causes this task to be scheduled in
different ways:

	effort

	If the schedule_model attribute is set to
“effort” then the start and end date values are
calculated so that a resource should spent this much of
work time to complete a Task. For example, a task with
schedule_timing of 4 days, needs 4 working days.
So it can take 4 working days to complete the Task, but it
doesn’t mean that the task duration will be 4 days. If the
resource works overtime then the task will be finished
before 4 days or if the resource will not be available
(due to a vacation) then the task duration can be much
more.

	duration

	The duration of the task will exactly be equal to
schedule_timing regardless of the resource
availability. So the difference between start
and end attribute values are equal to
schedule_timing. Essentially making the task
duration in calendar days instead of working days.

	length

	In this model the duration of the task will exactly be
equal to the given length value in working days regardless
of the resource availability. So a task with the
schedule_timing is set to 4 days will be
completed in 4 working days. But again it will not be
always 4 calendar days due to the weekends or non working
days.

	
schedule_seconds

	returns the total effort, length or duration in seconds, for
completeness calculation

	
schedule_timing

	It is the value of the schedule timing. It is a float
value.

The timing value can either be as Work Time or Calendar Time
defined by the schedule_model attribute. So when the schedule_model
is duration then the value of this attribute is in Calendar Time,
and if the schedule_model is either length or effort then the
value is considered as Work Time.

	
schedule_unit

	It is the unit of the schedule timing. It is a string
value. And should be one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	
shots

	The Shots assigned to this Sequence.

It is a list of Shot instances.

	
start

	overridden start getter

	
status

	The current status of the object.

It is a Status instance which
is one of the Statuses stored in the status_list attribute
of this object.

	
stop()

	Stops this task. It is nearly equivalent to deleting this task. But
this will at least preserve the TimeLogs entered for this task. It is
only possible to stop WIP tasks.

You can use resume() to resume the task.

The only difference between hold() (other than setting the task
to different statuses) is the schedule info, while the hold()
method will preserve the schedule info, stop() will set the schedule
info to the current effort.

So if 2 days of effort has been entered for a 4 days task, when stopped
the task effort will be capped to 2 days, thus TaskJuggler will not try
to reserve any resource for this task anymore.

Also, STOP tasks will be ignored in dependency relations.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
task_dependent_of

	A list of Tasks that this one is being depended by.

A CircularDependencyError will be raised when the task dependency
creates a circular dependency which means it is not allowed to create
a dependency for this Task which is depending on another one which in
some way depends to this one again.

	
task_depends_to

	A list of Tasks that this one is depending on.

A CircularDependencyError will be raised when the task dependency
creates a circular dependency which means it is not allowed to create
a dependency for this Task which is depending on another one which in
some way depends to this one again.

	
task_id

	The primary_key attribute for the Tasks table used by
SQLAlchemy to map this Task in relationships.

	
tasks

	A synonym for the children attribute used by the
descendants of the Task class (currently Asset,
Shot and Sequence classes).

	
tickets

	returns the tickets referencing this task in their links attribute

	
time_logs

	A list of TimeLog instances showing who and when has
spent how much effort on this task.

	
tjp_abs_id

	returns the calculated absolute id of this task

	
tjp_id

	returns TaskJuggler compatible id

	
classmethod to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the
schedule_model the value will differ. So if the schedule_model is
‘effort’ or ‘length’ then the schedule_time and schedule_unit values
are interpreted as work time, if the schedule_model is ‘duration’ then
the schedule_time and schedule_unit values are considered as calendar
time.

	
to_tjp

	TaskJuggler representation of this task

	
total_logged_seconds

	The total effort spent for this Task. It is the sum of all the
TimeLogs recorded for this task as seconds.

	Returns int

	An integer showing the total seconds spent.

	
total_seconds

	returns the duration as seconds

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
update_parent_statuses()

	updates the parent statuses of this task if any

	
update_schedule_info()

	updates the total_logged_seconds and schedule_seconds attributes by
using the children info and triggers an update on every children

	
update_status_with_children_statuses()

	updates the task status according to its children statuses

	
update_status_with_dependent_statuses(removing=None)

	updates the status by looking at the dependent tasks

	Parameters

	removing – The item that is been removing right now, used for the
remove event to overcome the update issue.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
versions

	A list of Version instances showing the files created
for this task.

	
walk_dependencies(method=1)

	Walks the dependencies of this task

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

	
walk_hierarchy(method=0)

	Walks the hierarchy of this task.

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

	
watchers

	The list of Users watching this Task.

stalker.models.shot.Shot

[image: Inheritance diagram of stalker.models.shot.Shot]

	
class stalker.models.shot.Shot(code=None, project=None, sequences=None, scenes=None, cut_in=None, cut_out=None, source_in=None, source_out=None, record_in=None, image_format=None, fps=None, **kwargs)

	Bases: stalker.models.task.Task, stalker.models.mixins.CodeMixin

Manages Shot related data.

Warning

Deprecated since version 0.1.2.

Because most of the shots in different projects may going to have
the same name, which is a kind of a code like SH001, SH012A etc., and
in Stalker you can not have two entities with the same name if their
types are also matching, to guarantee all the shots are going to have
different names the name attribute of the Shot instances are
automatically set to a randomly generated uuid4 sequence.

Note

New in version 0.1.2.

The name of the shot can be freely set without worrying about clashing
names.

Note

New in version 0.2.0.

Shot instances now can have their own image format. So you can set up
different resolutions per shot.

Note

New in version 0.2.0.

Shot instances can now be created with a Project instance only, without
needing a Sequence instance. Sequences are now a kind of a grouping
attribute for the Shots. And Shots can have more than one Sequence.

Note

New in version 0.2.0.

Shots now have a new attribute called scenes, holding
Scene instances which is another grouping attribute like
sequences. Where Sequences are grouping the Shots according to their
temporal position to each other, Scenes are grouping the Shots according
to their view to the world, that is shots taking place in the same set
configuration can be grouped together by using Scenes.

Two shots with the same code can not be assigned to the same
Sequence.

Note

New in version 0.2.10.

Simplified the implementation of cut_in, cut_out and
cut_duration attributes. The cut_duration is always
the difference between cut_in and cut_out and its
value is only be calculated when it is requested. This greatly
simplifies the implementation of cut_in and cut_out
attributes.

The cut_out and cut_duration attributes effects each
other. Setting the cut_out will change the cut_duration
and setting the cut_duration will change the cut_out
value. The default value of the cut_duration attribute is
calculated from the cut_in and cut_out attributes. If
both cut_out and cut_duration arguments are set to None,
the cut_duration defaults to 1 and cut_out will be set to
cut_in + cut_duration. So the priority of the attributes
are as follows:

cut_in >
cut_out >
cut_duration

Note

New in version 0.2.4.

handles_at_start and handles_at_end attributes.

Note

New in version 0.2.17.2.

Per shot FPS values. It is now possible to change the shot fps by
setting its fps attribute. The default values is same with the
Project.

	Parameters

	
	project (Project) – This is the Project instance that this shot
belongs to. A Shot can not be created without a Project instance.

	sequences (list of Sequence) – This is a list of Sequences that this shot is
assigned to. A Shot can be created without having a Sequence instance.

	cut_in (int [https://docs.python.org/3/library/functions.html#int]) – The in frame number that this shot starts. The default
value is 1. When the cut_in is bigger then cut_out, the
cut_out attribute is set to cut_in + 1.

	cut_duration (int [https://docs.python.org/3/library/functions.html#int]) – The duration of this shot in frames. It should
be zero or a positive integer value (natural number?) or . The default
value is None.

	cut_out (int [https://docs.python.org/3/library/functions.html#int]) – The out frame number that this shot ends. If it is
given as a value lower then the cut_in parameter, then the
cut_out will be recalculated from the existent cut_in
cut_duration attributes. Can be skipped. The default value is
None.

	image_format (ImageFormat) – The image format of this shot. This is an optional
variable to differentiate the image format per shot. The default value is
the same with the Project that this Shot belongs to.

	fps (float [https://docs.python.org/3/library/functions.html#float]) – The FPS of this shot. Default value is the same with the
Project.

	
__init__(code=None, project=None, sequences=None, scenes=None, cut_in=None, cut_out=None, source_in=None, source_out=None, record_in=None, image_format=None, fps=None, **kwargs)

	

Methods

	__init__([code, project, sequences, scenes, …])

	

	create_time_log(resource, start, end)

	A helper method to create TimeLogs, this will ease creating TimeLog instances for task.

	hold()

	Pauses the execution of this task by setting its status to OH.

	least_meaningful_time_unit(seconds[, …])

	returns the least meaningful timing unit that corresponds to the given seconds.

	request_review()

	Creates and returns Review instances for each of the responsible of this task and sets the task status to PREV.

	request_revision([reviewer, description, …])

	Requests revision.

	resume()

	Resumes the execution of this task by setting its status to RTS or WIP depending to its time_logs attribute, so if it has TimeLogs then it will resume as WIP and if it doesn’t then it will resume as RTS.

	review_set([review_number])

	returns the reviews with the given review_number, if review_number is skipped it will return the latest set of reviews

	round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

	stop()

	Stops this task.

	to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the schedule_model the value will differ.

	update_parent_statuses()

	updates the parent statuses of this task if any

	update_schedule_info()

	updates the total_logged_seconds and schedule_seconds attributes by using the children info and triggers an update on every children

	update_status_with_children_statuses()

	updates the task status according to its children statuses

	update_status_with_dependent_statuses([removing])

	updates the status by looking at the dependent tasks

	walk_dependencies([method])

	Walks the dependencies of this task

	walk_hierarchy([method])

	Walks the hierarchy of this task.

Attributes

	absolute_path

	the absolute_path attribute

	allocation_strategy

	Please read Task class documentation for details.

	alternative_resources

	The list of Users assigned to this Task as an alternative resource.

	bid_timing

	The value of the initial bid of this Task.

	bid_unit

	The unit of the initial bid of this Task.

	children

	Other Budget instances which are the children of this one.

	code

	The code name of this object.

	computed_duration

	returns the computed_duration as the difference of computed_start and computed_end if there are computed_start and computed_end otherwise returns None

	computed_end

	

	computed_resources

	getter for the _computed_resources attribute

	computed_start

	

	computed_total_seconds

	returns the duration as seconds

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	cut_duration

	getter for the cut_duration property

	cut_in

	The start frame of this shot.

	cut_out

	The end frame of this shot.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	defaults

	

	dependent_of

	

	depends

	

	description

	Description of this object.

	duration

	Duration of the entity.

	end

	overridden end getter

	entity_groups

	

	entity_id

	

	entity_type

	

	fps

	The fps of this shot.

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	good

	

	good_id

	

	html_class

	

	html_style

	

	id

	

	image_format

	The image_format of this shot.

	image_format_id

	

	is_container

	Returns True if the Task has children Tasks

	is_leaf

	Returns True if the Task has no children Tasks

	is_milestone

	Specifies if this Task is a milestone.

	is_root

	Returns True if the Task has no parent

	is_scheduled

	A predicate which returns True if this task has both a computed_start and computed_end values

	level

	Returns the level of this task.

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	open_tickets

	returns the open tickets referencing this task in their links attribute

	parent

	A Task instance which is the parent of this Task.

	parent_id

	

	parents

	Returns all of the parents of this mixed in class starting from the root

	path

	The path attribute will generate a path suitable for placing the files under it.

	percent_complete

	returns the percent_complete based on the total_logged_seconds and schedule_seconds of the task.

	persistent_allocation

	Please read Task class documentation for details.

	plural_class_name

	the plural name of this class

	priority

	An integer number between 0 and 1000 used by TaskJuggler to determine the priority of this Task.

	project

	The owner Project of this task.

	project_id

	The id of the owner Project of this Task.

	query

	

	record_in

	The start frame in the Editors timeline specifying the start frame general placement of this shot.

	references

	A list of Link instances given as a reference for this entity.

	remaining_seconds

	returns the remaining amount of efforts, length or duration left in this Task as seconds.

	resources

	The list of Users assigned to this Task.

	responsible

	The responsible of this task.

	review_number

	returns the _review_number attribute value

	reviews

	A list of Review holding the details about the reviews created for this task.

	scenes

	

	schedule_constraint

	An integer number showing the constraint schema for this task.

	schedule_model

	Defines the schedule model which is going to be used by TaskJuggler while scheduling this Task.

	schedule_seconds

	returns the total effort, length or duration in seconds, for completeness calculation

	schedule_timing

	It is the value of the schedule timing.

	schedule_unit

	It is the unit of the schedule timing.

	sequences

	

	shot_id

	

	source_in

	The start frame of the used range, should be in between:attr:.cut_in and cut_out

	source_out

	The end frame of the used range, should be in between:attr:.cut_in and :attr:.cut_out`

	start

	overridden start getter

	status

	The current status of the object.

	status_id

	

	status_list

	

	status_list_id

	

	tags

	A list of tags attached to this object.

	task_dependent_of

	A list of Tasks that this one is being depended by.

	task_depends_to

	A list of Tasks that this one is depending on.

	task_id

	The primary_key attribute for the Tasks table used by SQLAlchemy to map this Task in relationships.

	tasks

	A synonym for the children attribute used by the descendants of the Task class (currently Asset, Shot and Sequence classes).

	thumbnail

	

	thumbnail_id

	

	tickets

	returns the tickets referencing this task in their links attribute

	time_logs

	A list of TimeLog instances showing who and when has spent how much effort on this task.

	tjp_abs_id

	returns the calculated absolute id of this task

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	TaskJuggler representation of this task

	total_logged_seconds

	The total effort spent for this Task.

	total_seconds

	returns the duration as seconds

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	versions

	A list of Version instances showing the files created for this task.

	watchers

	The list of Users watching this Task.

	
absolute_path

	the absolute_path attribute

	
allocation_strategy

	Please read Task class documentation for details.

	
alternative_resources

	The list of Users assigned to this Task as an alternative resource.

	
bid_timing

	The value of the initial bid of this Task. It is an integer or
a float.

	
bid_unit

	The unit of the initial bid of this Task. It is a string value.
And should be one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	
children

	Other Budget instances which are the children of this
one. This attribute along with the parent attribute is used in
creating a DAG hierarchy of tasks.

	
code

	The code name of this object.

It accepts strings. Can not be None.

	
computed_duration

	returns the computed_duration as the difference of computed_start
and computed_end if there are computed_start and computed_end otherwise
returns None

	
computed_resources

	getter for the _computed_resources attribute

	
computed_total_seconds

	returns the duration as seconds

	
create_time_log(resource, start, end)

	A helper method to create TimeLogs, this will ease creating TimeLog
instances for task.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
cut_duration

	getter for the cut_duration property

	
cut_in

	The start frame of this shot. It is the start frame of the playback range in the application (Maya, Nuke etc.).

	
cut_out

	The end frame of this shot. It is the end frame of the playback range in the application (Maya, Nuke etc.).

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
duration

	Duration of the entity.

It is a datetime.timedelta instance. Showing the difference of
the start and the end. If edited it changes
the end attribute value.

	
end

	overridden end getter

	
fps

	The fps of this shot.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
hold()

	Pauses the execution of this task by setting its status to OH. Only
applicable to RTS and WIP tasks, any task with other statuses will
raise a ValueError.

	
image_format

	The image_format of this shot. Set it to None to re-sync with Project.image_format.

	
is_container

	Returns True if the Task has children Tasks

	
is_leaf

	Returns True if the Task has no children Tasks

	
is_milestone

	Specifies if this Task is a milestone.

Milestones doesn’t need any duration, any effort and any resources. It
is used to create meaningful dependencies between the critical stages
of the project.

	
is_root

	Returns True if the Task has no parent

	
is_scheduled

	A predicate which returns True if this task has both a
computed_start and computed_end values

	
classmethod least_meaningful_time_unit(seconds, as_work_time=True)

	returns the least meaningful timing unit that corresponds to the
given seconds. So if:

	as_work_time == True

	seconds % (1 years work time as seconds) == 0 –> ‘y’ else:
seconds % (1 month work time as seconds) == 0 –> ‘m’ else:
seconds % (1 week work time as seconds) == 0 –> ‘w’ else:
seconds % (1 day work time as seconds) == 0 –> ‘d’ else:
seconds % (1 hour work time as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes work time as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	as_work_time == False

	seconds % (1 years as seconds) == 0 –> ‘y’ else:
seconds % (1 month as seconds) == 0 –> ‘m’ else:
seconds % (1 week as seconds) == 0 –> ‘w’ else:
seconds % (1 day as seconds) == 0 –> ‘d’ else:
seconds % (1 hour as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	Parameters

	
	seconds (int [https://docs.python.org/3/library/functions.html#int]) – An integer showing the total seconds to be
converted.

	as_work_time (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the input be considered as work time
or calendar time.

	Returns int, string

	Returns one integer and one string, showing the
timing value and the unit.

	
level

	Returns the level of this task. It is a temporary property and will
be useless when Stalker has its own implementation of a proper Gantt
Chart. Write now it is used by the jQueryGantt.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
open_tickets

	returns the open tickets referencing this task in their links
attribute

	
parent

	A Task instance which is the parent of this Task.
In Stalker it is possible to create a hierarchy of Task.

	
parents

	Returns all of the parents of this mixed in class starting from the
root

	
path

	The path attribute will generate a path suitable for placing the
files under it. It will use the FilenameTemplate class
related to the Project Structure with the
target_entity_type is set to the type of this instance.

	
percent_complete

	returns the percent_complete based on the total_logged_seconds and
schedule_seconds of the task. Container tasks will use info from their
children

	
persistent_allocation

	Please read Task class documentation for details.

	
plural_class_name

	the plural name of this class

	
priority

	An integer number between 0 and 1000 used by TaskJuggler to
determine the priority of this Task. The default value is 500.

	
project

	The owner Project of this task.

It is a read-only attribute. It is not possible to change the owner
Project of a Task it is defined when the Task is created.

	
project_id

	The id of the owner Project of this Task. This
attribute is mainly used by SQLAlchemy to map a Project
instance to a Task.

	
record_in

	The start frame in the Editors timeline specifying the start frame general placement of this shot.

	
references

	A list of Link instances given as a reference for
this entity.

	
remaining_seconds

	returns the remaining amount of efforts, length or duration left
in this Task as seconds.

	
request_review()

	Creates and returns Review instances for each of the responsible of
this task and sets the task status to PREV.

New in version 0.2.0: Request review will not cap the timing of this task anymore.

Only applicable to leaf tasks.

	
request_revision(reviewer=None, description='', schedule_timing=1, schedule_unit='h')

	Requests revision.

Applicable to PREV or CMPL leaf tasks. This method will expand the
schedule timings of the task according to the supplied arguments.

When request_revision is called on a PREV task, the other NEW Review
instances (those created when request_review on a WIP task is called
and still waiting a review) will be deleted.

This method at the end will return a new Review instance with correct
attributes (reviewer, description, schedule_timing, schedule_unit and
review_number attributes).

	Parameters

	
	reviewer (class:.User) – This is the user that requested the revision. He/she
doesn’t need to be the responsible, anybody that has a Permission to
create a Review instance can request a revision.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – The description of the requested revision.

	schedule_timing (int [https://docs.python.org/3/library/functions.html#int]) – The timing value of the requested revision.
The task will be extended this much of duration. Works along with the
schedule_unit parameter. The default value is 1.

	schedule_unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – The timin unit value of the requested
revision. The task will be extended this much of duration. Works
along with the schedule_timing parameter. The default value is
‘h’ for ‘hour’.

	
resources

	The list of Users assigned to this Task.

	
responsible

	The responsible of this task.

This attribute will return the responsible of this task which is a
list of User instances. If there is no responsible set
for this task, then it will try to find a responsible in its
parents.

	
resume()

	Resumes the execution of this task by setting its status to RTS or
WIP depending to its time_logs attribute, so if it has TimeLogs then it
will resume as WIP and if it doesn’t then it will resume as RTS. Only
applicable to Tasks with status OH.

	
review_number

	returns the _review_number attribute value

	
review_set(review_number=None)

	returns the reviews with the given review_number, if review_number
is skipped it will return the latest set of reviews

	
reviews

	A list of Review holding the details about the reviews
created for this task.

	
classmethod round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Uses stalker.defaults.timing_resolution as the closest number
of seconds to round to.

	Parameters

	dt (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – datetime.datetime object, defaults to now.

Based on Thierry Husson’s answer in Stackoverflow

Stackoverflow : http://stackoverflow.com/a/10854034/1431079

	
schedule_constraint

	An integer number showing the constraint schema for this
task.

Possible values are:

	0

	Constrain None

	1

	Constrain Start

	2

	Constrain End

	3

	Constrain Both

For convenience use stalker.models.task.CONSTRAIN_NONE,
stalker.models.task.CONSTRAIN_START,
stalker.models.task.CONSTRAIN_END,
stalker.models.task.CONSTRAIN_BOTH.

This value is going to be used to constrain the start and end date
values of this task. So if you want to pin the start of a task to a
certain date. Set its schedule_constraint value to
CONSTRAIN_START. When the task is scheduled by TaskJuggler
the start date will be pinned to the start attribute of
this task.

And if both of the date values (start and end) wanted to be pinned
to certain dates (making the task effectively a duration task)
set the desired start and end and then set the
schedule_constraint to CONSTRAIN_BOTH.

	
schedule_model

	Defines the schedule model which is going to be used by
TaskJuggler while scheduling this Task. It has three possible
values; effort, duration, length. effort is the
default value. Each value causes this task to be scheduled in
different ways:

	effort

	If the schedule_model attribute is set to
“effort” then the start and end date values are
calculated so that a resource should spent this much of
work time to complete a Task. For example, a task with
schedule_timing of 4 days, needs 4 working days.
So it can take 4 working days to complete the Task, but it
doesn’t mean that the task duration will be 4 days. If the
resource works overtime then the task will be finished
before 4 days or if the resource will not be available
(due to a vacation) then the task duration can be much
more.

	duration

	The duration of the task will exactly be equal to
schedule_timing regardless of the resource
availability. So the difference between start
and end attribute values are equal to
schedule_timing. Essentially making the task
duration in calendar days instead of working days.

	length

	In this model the duration of the task will exactly be
equal to the given length value in working days regardless
of the resource availability. So a task with the
schedule_timing is set to 4 days will be
completed in 4 working days. But again it will not be
always 4 calendar days due to the weekends or non working
days.

	
schedule_seconds

	returns the total effort, length or duration in seconds, for
completeness calculation

	
schedule_timing

	It is the value of the schedule timing. It is a float
value.

The timing value can either be as Work Time or Calendar Time
defined by the schedule_model attribute. So when the schedule_model
is duration then the value of this attribute is in Calendar Time,
and if the schedule_model is either length or effort then the
value is considered as Work Time.

	
schedule_unit

	It is the unit of the schedule timing. It is a string
value. And should be one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	
source_in

	The start frame of the used range, should be in between:attr:.cut_in and cut_out

	
source_out

	The end frame of the used range, should be in between:attr:.cut_in and :attr:.cut_out`

	
start

	overridden start getter

	
status

	The current status of the object.

It is a Status instance which
is one of the Statuses stored in the status_list attribute
of this object.

	
stop()

	Stops this task. It is nearly equivalent to deleting this task. But
this will at least preserve the TimeLogs entered for this task. It is
only possible to stop WIP tasks.

You can use resume() to resume the task.

The only difference between hold() (other than setting the task
to different statuses) is the schedule info, while the hold()
method will preserve the schedule info, stop() will set the schedule
info to the current effort.

So if 2 days of effort has been entered for a 4 days task, when stopped
the task effort will be capped to 2 days, thus TaskJuggler will not try
to reserve any resource for this task anymore.

Also, STOP tasks will be ignored in dependency relations.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
task_dependent_of

	A list of Tasks that this one is being depended by.

A CircularDependencyError will be raised when the task dependency
creates a circular dependency which means it is not allowed to create
a dependency for this Task which is depending on another one which in
some way depends to this one again.

	
task_depends_to

	A list of Tasks that this one is depending on.

A CircularDependencyError will be raised when the task dependency
creates a circular dependency which means it is not allowed to create
a dependency for this Task which is depending on another one which in
some way depends to this one again.

	
task_id

	The primary_key attribute for the Tasks table used by
SQLAlchemy to map this Task in relationships.

	
tasks

	A synonym for the children attribute used by the
descendants of the Task class (currently Asset,
Shot and Sequence classes).

	
tickets

	returns the tickets referencing this task in their links attribute

	
time_logs

	A list of TimeLog instances showing who and when has
spent how much effort on this task.

	
tjp_abs_id

	returns the calculated absolute id of this task

	
tjp_id

	returns TaskJuggler compatible id

	
classmethod to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the
schedule_model the value will differ. So if the schedule_model is
‘effort’ or ‘length’ then the schedule_time and schedule_unit values
are interpreted as work time, if the schedule_model is ‘duration’ then
the schedule_time and schedule_unit values are considered as calendar
time.

	
to_tjp

	TaskJuggler representation of this task

	
total_logged_seconds

	The total effort spent for this Task. It is the sum of all the
TimeLogs recorded for this task as seconds.

	Returns int

	An integer showing the total seconds spent.

	
total_seconds

	returns the duration as seconds

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
update_parent_statuses()

	updates the parent statuses of this task if any

	
update_schedule_info()

	updates the total_logged_seconds and schedule_seconds attributes by
using the children info and triggers an update on every children

	
update_status_with_children_statuses()

	updates the task status according to its children statuses

	
update_status_with_dependent_statuses(removing=None)

	updates the status by looking at the dependent tasks

	Parameters

	removing – The item that is been removing right now, used for the
remove event to overcome the update issue.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
versions

	A list of Version instances showing the files created
for this task.

	
walk_dependencies(method=1)

	Walks the dependencies of this task

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

	
walk_hierarchy(method=0)

	Walks the hierarchy of this task.

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

	
watchers

	The list of Users watching this Task.

stalker.models.status.Status

[image: Inheritance diagram of stalker.models.status.Status]

	
class stalker.models.status.Status(name=None, code=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.CodeMixin

Defines object statutes.

No extra parameters, use the code attribute to give a short name for the
status.

A Status object can be compared with a string value and it will return if
the lower case name or lower case code of the status matches the lower case
form of the given string:

>>> from stalker import Status
>>> a_status = Status(name="On Hold", code="OH")
>>> a_status == "on hold"
True
>>> a_status != "complete"
True
>>> a_status == "oh"
True
>>> a_status == "another status"
False

	Parameters

	
	name – The name long name of this Status.

	code – The code of this Status, its generally the short version of
the name attribute.

	
__init__(name=None, code=None, **kwargs)

	

Methods

	__init__([name, code])

	

Attributes

	code

	The code name of this object.

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	status_id

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
code

	The code name of this object.

It accepts strings. Can not be None.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.status.StatusList

[image: Inheritance diagram of stalker.models.status.StatusList]

	
class stalker.models.status.StatusList(statuses=None, target_entity_type=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.TargetEntityTypeMixin

Type specific list of Status instances.

Holds multiple Statuses to be used as a choice list for several
other classes.

A StatusList can only be assigned to only one entity type. So a
Project can only have one suitable StatusList object which is
designed for Project entities.

The list of statuses in StatusList can be accessed by using a list like
indexing and it also supports string indexes only for getting the item,
you can not set an item with string indices:

>>> from stalker import Status, StatusList
>>> status1 = Status(name="Complete", code="CMPLT")
>>> status2 = Status(name="Work in Progress", code="WIP")
>>> status3 = Status(name="Pending Review", code="PRev")
>>> a_status_list = StatusList(name="Asset Status List",
 statuses=[status1, status2, status3],
 target_entity_type="Asset")
>>> a_status_list[0]
<Status (Complete, CMPLT)>
>>> a_status_list["complete"]
<Status (Complete, CMPLT)>
>>> a_status_list["WIP"]
<Status (Work in Progress, WIP)>

	Parameters

	
	statuses – This is a list of Status instances, so you can
prepare different StatusLists for different kind of entities using the
same pool of Statuses.

	target_entity_type – use this parameter to specify the target entity
type that this StatusList is designed for. It accepts classes or names
of classes.

For example:

from stalker import Status, StatusList, Project

status_list = [
 Status(name="Waiting To Start", code="WTS"),
 Status(name="On Hold", code="OH"),
 Status(name="In Progress", code="WIP"),
 Status(name="Waiting Review", code="WREV"),
 Status(name="Approved", code="APP"),
 Status(name="Completed", code="CMPLT"),
]

project_status_list = StatusList(
 name="Project Status List",
 statuses=status_list,
 target_entity_type="Project"
)

or
project_status_list = StatusList(
 name="Project Status List",
 statuses=status_list,
 target_entity_type=Project
)

now with the code above you can not assign the project_status_list
object to any other class than a Project object.

The StatusList instance can be empty, means it may not have anything in
its StatusList.statuses. But it is useless. The validation for
empty statuses list is left to the SOM user.

	
__init__(statuses=None, target_entity_type=None, **kwargs)

	

Methods

	__init__([statuses, target_entity_type])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	status_list_id

	

	statuses

	List of Status objects, showing the possible statuses

	tags

	A list of tags attached to this object.

	target_entity_type

	The entity type which this object is valid for.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
statuses

	List of Status objects, showing the possible statuses

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
target_entity_type

	The entity type which this object is valid for.

Usually it is set to the TargetClass directly.

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.structure.Structure

[image: Inheritance diagram of stalker.models.structure.Structure]

	
class stalker.models.structure.Structure(templates=None, custom_template=None, **kwargs)

	Bases: stalker.models.entity.Entity

Defines folder structures for Projects.

Structures are generally owned by Project objects. Whenever a
Project is physically created, project folders are created by
looking at Structure.custom_template of the Structure,
the Project object is generally given to the Structure.
So it is possible to use a variable like “{{project}}” or derived variables
like:

{% for seq in project.sequences %}
 {{do something here}}

Every line of this rendered template will represent a folder and Stalker
will create these folders on the attached Repository.

	Parameters

	
	templates (list of FilenameTemplates) – A list of FilenameTemplates which defines a
specific template for the given
FilenameTemplate.target_entity_types.

	custom_template (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string containing several lines of folder
names. The folders are relative to the Project root. It can
also contain a Jinja2 Template code. Which will be rendered to show the
list of folders to be created with the project. The Jinja2 Template is
going to have the {{project}} variable. The important point to be careful
about is to list all the custom folders of the project in a new line in
this string. For example a Structure for a Project
can have the following Structure.custom_template:

ASSETS
{% for asset in project.assets %}
 {% set asset_root = 'ASSETS/' + asset.code %}
 {{asset_root}}

 {% for task in asset.tasks %}
 {% set task_root = asset_root + '/' + task.code %}
 {{task_root}}

SEQUENCES
{% for seq in project.sequences %}}
 {% set seq_root = 'SEQUENCES/' + {{seq.code}} %}
 {{seq_root}}/Edit
 {{seq_root}}/Edit/Export
 {{seq_root}}/Storyboard

 {% for shot in seq.shots %}
 {% set shot_root = seq_root + '/SHOTS/' + shot.code %}
 {{shot_root}}

 {% for task in shot.tasks %}
 {% set task_root = shot_root + '/' + task.code %}
 {{task_root}}

The above example has gone far beyond deep than it is needed, where it
started to define paths for Assets. Even it is possible to
create a Project structure like that, in general it is
unnecessary. Because the above folders are going to be created but they
are probably going to be empty for a while, because the
Assets are not created yet (or in fact no
Versions are created for the Tasks). Anyway, it
is much suitable and desired to create this details by using
FilenameTemplate objects. Which are specific to certain
FilenameTemplate.target_entity_types. And by using the
Structure.custom_template attribute, Stalker can not place any
source or output file of a Version in the Repository
where as it can by using FilenameTemplates.

But for certain types of Tasks it is may be good to
previously create the folder structure just because in certain
environments (programs) it is not possible to run a Python code that will
place the file in to the Repository like in Photoshop.

The custom_template parameter can be None or an empty string if it is
not needed.

A Structure can not be created without a type
(__strictly_typed__ = True). By giving a type to the
Structure, you can create one structure for Commercials and
another project structure for Movies and another one for Print
projects etc. and can reuse them with new Projects.

	
__init__(templates=None, custom_template=None, **kwargs)

	

Methods

	__init__([templates, custom_template])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	custom_template

	

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	structure_id

	

	tags

	A list of tags attached to this object.

	templates

	

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.studio.Studio

[image: Inheritance diagram of stalker.models.studio.Studio]

	
class stalker.models.studio.Studio(daily_working_hours=None, now=None, timing_resolution=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.DateRangeMixin, stalker.models.mixins.WorkingHoursMixin

Manage all the studio information at once.

With Stalker you can manage all you Studio data by using this class. Studio
knows all the projects, all the departments, all the users and every thing
about the studio. But the most important part of the Studio is that it can
schedule all the Projects by using TaskJuggler.

Studio class is kind of the database itself:

studio = Studio()

simple data
studio.projects
studio.active_projects
studio.inactive_projects
studio.departments
studio.users

project management
studio.to_tjp # a tjp representation of the studio with all
 # its projects, departments and resources etc.

studio.schedule() # schedules all the active projects at once

Working Hours

In Stalker, Studio class also manages the working hours of the studio.
Allowing project tasks to be scheduled to be scheduled in those hours.

Vacations

Studio wide vacations are managed by the Studio class.

Scheduling

There are a couple of attributes those become pretty interesting when used
together with the Studio instance while using the scheduling part of the
Studio. Please refer to the attribute documentation for each attribute:

is_scheduling
last_scheduled_at
last_scheduled_by
last_schedule_message

	Parameters

	
	daily_working_hours (int [https://docs.python.org/3/library/functions.html#int]) – An integer specifying the daily working
hours for the studio. It is another critical value attribute which
TaskJuggler uses mainly converting working day values to working hours
(1d = 10h kind of thing).

	now (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – The now attribute overrides the TaskJugglers now attribute
allowing the user to schedule the projects as if the scheduling is done
on that date. The default value is the rounded value of
datetime.datetime.now(pytz.utc).

	timing_resolution (datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]) – The timing_resolution of the datetime.datetime
object in datetime.timedelta. Uses timing_resolution settings in the
stalker.config.Config class which defaults to 1 hour. Setting
the timing_resolution to less then 5 minutes is not suggested because it
is a limit for TaskJuggler.

	
__init__(daily_working_hours=None, now=None, timing_resolution=None, **kwargs)

	

Methods

	__init__([daily_working_hours, now, …])

	

	round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

	schedule([scheduled_by])

	Schedules all the active projects in the studio.

	to_unit(from_timing, from_unit, to_unit[, …])

	converts the given timing and unit to the desired unit if working_hours=True then the given timing is considered as working hours

	update_defaults()

	updates the default values with the studio

Attributes

	active_projects

	returns all the active projects in the studio

	computed_duration

	returns the computed_duration as the difference of computed_start and computed_end if there are computed_start and computed_end otherwise returns None

	computed_end

	

	computed_start

	

	computed_total_seconds

	returns the duration as seconds

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	daily_working_hours

	a shortcut for Studio.working_hours.daily_working_hours

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	departments

	returns all the departments in the studio

	description

	Description of this object.

	duration

	Duration of the entity.

	end

	The date that the entity should be delivered.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	inactive_projects

	return all the inactive projects in the studio

	is_scheduling

	

	is_scheduling_by

	The User who is scheduling the Studio projects right now

	is_scheduling_by_id

	The id of the user who is scheduling the Studio projects right now

	last_schedule_message

	Holds the last schedule message, generally coming generated by TaskJuggler

	last_scheduled_at

	Stores the last schedule date

	last_scheduled_by

	The User who has last scheduled the Studio projects

	last_scheduled_by_id

	The id of the user who has last scheduled the Studio projects

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	now

	now getter

	plural_class_name

	the plural name of this class

	projects

	returns all the projects in the studio

	query

	

	scheduler

	scheduler getter

	scheduling_started_at

	Stores when the current scheduling is started at, it is a good measure for measuring if the last schedule is not correctly finished

	start

	The date that this entity should start.

	studio_id

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	timing_resolution

	The timing_resolution of this object.

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	converts the studio to a tjp representation

	total_seconds

	returns the duration as seconds

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	users

	returns all the users in the studio

	vacations

	returns all Vacations which doesn’t have a User defined

	weekly_working_days

	returns the WorkingHours.weekly_working_hours

	weekly_working_hours

	returns the WorkingHours.weekly_working_hours

	working_hours

	

	working_hours_id

	the id of the related working hours

	yearly_working_days

	returns the yearly working days

	
active_projects

	returns all the active projects in the studio

	
computed_duration

	returns the computed_duration as the difference of computed_start
and computed_end if there are computed_start and computed_end otherwise
returns None

	
computed_total_seconds

	returns the duration as seconds

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
daily_working_hours

	a shortcut for Studio.working_hours.daily_working_hours

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
departments

	returns all the departments in the studio

	
description

	Description of this object.

	
duration

	Duration of the entity.

It is a datetime.timedelta instance. Showing the difference of
the start and the end. If edited it changes
the end attribute value.

	
end

	The date that the entity should be delivered.

The end can be set to a datetime.timedelta and in this case it will be
calculated as an offset from the start and converted to
datetime.datetime again. Setting the start to a date passing the end
will also set the end, so the timedelta between them is preserved,
default value is 10 days

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
inactive_projects

	return all the inactive projects in the studio

	
is_scheduling_by

	The User who is scheduling the Studio projects right now

	
is_scheduling_by_id

	The id of the user who is scheduling the Studio projects right now

	
last_schedule_message

	Holds the last schedule message, generally coming generated by TaskJuggler

	
last_scheduled_at

	Stores the last schedule date

	
last_scheduled_by

	The User who has last scheduled the Studio projects

	
last_scheduled_by_id

	The id of the user who has last scheduled the Studio projects

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
now

	now getter

	
plural_class_name

	the plural name of this class

	
projects

	returns all the projects in the studio

	
classmethod round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Uses stalker.defaults.timing_resolution as the closest number
of seconds to round to.

	Parameters

	dt (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – datetime.datetime object, defaults to now.

Based on Thierry Husson’s answer in Stackoverflow

Stackoverflow : http://stackoverflow.com/a/10854034/1431079

	
schedule(scheduled_by=None)

	Schedules all the active projects in the studio. Needs a Scheduler,
so before calling it set a scheduler by using the scheduler
attribute.

	Parameters

	scheduled_by – A User instance who is doing the scheduling.

	
scheduler

	scheduler getter

	
scheduling_started_at

	Stores when the current scheduling is started at, it is a good measure for measuring if the last schedule is not correctly finished

	
start

	The date that this entity should start.

Also effects the DateRangeMixin.end attribute value in certain
conditions, if the DateRangeMixin.start is set to a time
passing the DateRangeMixin.end it will also offset the
DateRangeMixin.end to keep the
DateRangeMixin.duration value fixed.
DateRangeMixin.start should be an instance of
class:datetime.datetime and the default value is
datetime.datetime.now(pytz.utc)()

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
timing_resolution

	The timing_resolution of this object.

Can be set to any value that is representable with
datetime.timedelta. The default value is 1 hour. Whenever it is
changed the start, end and duration values will be updated.

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	converts the studio to a tjp representation

	
to_unit(from_timing, from_unit, to_unit, working_hours=True)

	converts the given timing and unit to the desired unit
if working_hours=True then the given timing is considered as working
hours

	
total_seconds

	returns the duration as seconds

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
update_defaults()

	updates the default values with the studio

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
users

	returns all the users in the studio

	
vacations

	returns all Vacations which doesn’t have a User defined

	
weekly_working_days

	returns the WorkingHours.weekly_working_hours

	
weekly_working_hours

	returns the WorkingHours.weekly_working_hours

	
working_hours_id

	the id of the related working hours

	
yearly_working_days

	returns the yearly working days

stalker.models.studio.WorkingHours

[image: Inheritance diagram of stalker.models.studio.WorkingHours]

	
class stalker.models.studio.WorkingHours(working_hours=None, daily_working_hours=None, **kwargs)

	Bases: stalker.models.entity.Entity

A helper class to manage Studio working hours.

Working hours is a data class to store the weekly working hours pattern of
the studio.

The data stored as a dictionary with the short day names are used as the
key and the value is a list of two integers showing the working hours
interval as the minutes after midnight. This is done in that way to ease
the data transfer to TaskJuggler. The default value is defined in
stalker.config.Config

wh = WorkingHours()
wh.working_hours = {
 'mon': [[540, 720], [820, 1080]], # 9:00 - 12:00, 13:00 - 18:00
 'tue': [[540, 720], [820, 1080]], # 9:00 - 12:00, 13:00 - 18:00
 'wed': [[540, 720], [820, 1080]], # 9:00 - 12:00, 13:00 - 18:00
 'thu': [[540, 720], [820, 1080]], # 9:00 - 12:00, 13:00 - 18:00
 'fri': [[540, 720], [820, 1080]], # 9:00 - 12:00, 13:00 - 18:00
 'sat': [], # saturday off
 'sun': [], # sunday off
}

The default value is 9:00 - 18:00 from Monday to Friday and Saturday and
Sunday are off.

The working hours can be updated by the user supplied dictionary. If the
user supplied dictionary doesn’t have all the days then the default values
will be used for those days.

It is possible to use day index and day short names as a key value to reach
the data:

from stalker import config
defaults = config.Config()

wh = WorkingHours()

this is same by doing wh.working_hours['sun']
assert wh['sun'] == defaults.working_hours['sun']

you can reach the data using the weekday number as index
assert wh[0] == defaults.working_hours['mon']

working hours of sunday if defaults are used or any other day defined
by the stalker.config.Config.day_order
assert wh[0] == defaults.working_hours[defaults.day_order[0]]

	Parameters

	working_hours – The dictionary that shows the working hours. The keys
of the dictionary should be one of [‘mon’, ‘tue’, ‘wed’, ‘thu’, ‘fri’,
‘sat’, ‘sun’]. And the values should be a list of two integers like
[[int, int], [int, int], …] format, showing the minutes after midnight.
For missing days the default value will be used. If skipped the default
value is going to be used.

	
__init__(working_hours=None, daily_working_hours=None, **kwargs)

	

Methods

	__init__([working_hours, daily_working_hours])

	

	is_working_hour(check_for_date)

	checks if the given datetime is in working hours

	split_in_to_working_hours(start, end)

	splits the given start and end datetime objects in to working hours

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	daily_working_hours

	

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	defaults

	

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	returns TaskJuggler representation of this object

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	weekly_working_days

	returns the weekly working days by looking at the working hours settings

	weekly_working_hours

	returns the total working hours in a week

	working_hours

	

	working_hours_id

	

	yearly_working_days

	returns the total working days in a year

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
is_working_hour(check_for_date)

	checks if the given datetime is in working hours

	Parameters

	check_for_date (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – The time to check if it is a
working hour

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
split_in_to_working_hours(start, end)

	splits the given start and end datetime objects in to working hours

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	returns TaskJuggler representation of this object

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
weekly_working_days

	returns the weekly working days by looking at the working hours
settings

	
weekly_working_hours

	returns the total working hours in a week

	
yearly_working_days

	returns the total working days in a year

stalker.models.tag.Tag

[image: Inheritance diagram of stalker.models.tag.Tag]

	
class stalker.models.tag.Tag(**kwargs)

	Bases: stalker.models.entity.SimpleEntity

Use it to create tags for any object available in SOM.

Doesn’t have any other attribute than what is inherited from
SimpleEntity

	
__init__(**kwargs)

	

Methods

	__init__(**kwargs)

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entities

	

	entity_groups

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	plural_class_name

	the plural name of this class

	query

	

	tag_id

	

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
plural_class_name

	the plural name of this class

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.task.Task

[image: Inheritance diagram of stalker.models.task.Task]

	
class stalker.models.task.Task(project=None, parent=None, depends=None, resources=None, alternative_resources=None, responsible=None, watchers=None, start=None, end=None, schedule_timing=1.0, schedule_unit='h', schedule_model=None, schedule_constraint=0, bid_timing=None, bid_unit=None, is_milestone=False, priority=500, allocation_strategy='minallocated', persistent_allocation=True, good=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.StatusMixin, stalker.models.mixins.DateRangeMixin, stalker.models.mixins.ReferenceMixin, stalker.models.mixins.ScheduleMixin, stalker.models.mixins.DAGMixin

Manages Task related data.

Introduction

Tasks are the smallest unit of work that should be accomplished to complete
a Project. Tasks define a certain amount of time needed to be
spent for a purpose. They also define a complex hierarchy of relation.

Stalker follows and enhances the concepts stated in TaskJuggler [http://www.taskjuggler.org/].

Note

New in version 0.2.0: References in Tasks

Tasks can now have References.

Initialization

Tasks are a part of a bigger Project, that’s way a Task needs to be created
with a Project instance. It is possible to create a task without
a project, if it is created to be a child of another task. And it is also
possible to pass both a project and a parent task.

But because passing both a project and a parent task may create an
ambiguity, Stalker will raise a RuntimeWarning, if both project and task
are given and the owner project of the given parent task is different then
the supplied project instance. But again Stalker will warn the user but
will continue to use the task as the parent and will correctly use the
project of the given task as the project of the newly created task.

The following codes are a couple of examples for creating Task instances:

with a project instance
>>> from stalker import Project
>>> project1 = Project(name='Test Project 1') # simplified
>>> task1 = Task(name='Schedule', project=project1)

with a parent task
>>> task2 = Task(name='Documentation', parent=task1)

or both
>>> task3 = Task(name='Test', project=project1, parent=task1)

this will create a RuntimeWarning
>>> project2 = Project(name='Test Project 2')
>>> task4 = Task(name='Test', project=project2, parent=task1)
task1 is not a # task of proj2

>>> assert task4.project == project1
Stalker uses the task1.project for task4

this will also create a RuntimeError
>>> task3 = Task(name='Failure 2') # no project no parent, this is an
 # orphan task.

Also initially Stalker will pin point the start value and then
will calculate proper end and duration values by using
the schedule_timing and schedule_unit attributes. But
these values (start, end and duration) are temporary values for an
unscheduled task. The final date values will be calculated by TaskJuggler
in the auto scheduling phase.

Auto Scheduling

Stalker uses TaskJuggler for task scheduling. After defining all the tasks,
Stalker will convert them to a single tjp file along with the recorded
TimeLogs Vacations etc. and let TaskJuggler to
solve the scheduling problem.

During the auto scheduling (with TaskJuggler), the calculation of task
duration, start and end dates are effected by the working hours setting of
the Studio, the effort that needs to spend for that task and the
availability of the resources assigned to the task.

A good practice for creating a project plan is to supply the parent/child
and dependency relation between tasks and the effort and resource
information per task and leave the start and end date calculation to
TaskJuggler.

The default schedule_model for Stalker tasks is ‘effort`, the
default schedule_unit is hour and the default value of
schedule_timing is defined by the
stalker.config.Config.timing_resolution. So for a config where the
timing_resolution is set to 1 hour the schedule_timing is 1.

It is also possible to use the length or duration values for
schedule_model (set it to ‘effort’, ‘length’ or ‘duration’ to get
the desired scheduling model).

To convert a Task instance to a TaskJuggler compatible string use the
to_tjp` attribute. It will try to create a good representation of
the Task by using the resources, schedule_model, schedule_timing and
schedule_constraint attributes.

** Alternative Resources**

New in version 0.2.5: Alternative Resources

Stalker now supports alternative resources per task. You can specify
alternative resources by using the alternative_resources
attribute. The number of resources and the number of alternative resources
are not related. So you can define only 1 resource and more than one
alternative resources, or you can define 2 resources and only one
alternative resource.

Warning

As opposed to TaskJuggler alternative resources are not per resource
based. So Stalker will use the alternatives list for all of the
resources in the resources list. Per resource alternative will be
supported in future versions of Stalker.

Stalker will pass the data to TaskJuggler and TJ will compute a list of
resources that are assigned to the task in the report time frame and
Stalker will store the resultant list of users in
computed_resources attribute.

Warning

When TaskJuggler computes the resources, the returned list may contain
resources which are not in the resources nor in
alternative_resources list anymore. Stalker will silently
filter those resources and will only store resources (in
computed_resources) those are still available as a direct or
alternative resource to that particular task.

The selection strategy of the alternative resource is defined by the
allocation_strategy attribute. The allocation_strategy
attribute value should be one of [minallocated, maxloaded, minloaded,
order, random]. The following description is from TaskJuggler
documentation:

	minallocated

	Pick the resource that has the smallest allocation
factor. The allocation factor is calculated from the
various allocations of the resource across the tasks.
This is the default setting.)

	maxloaded

	Pick the available resource that has been used the
most so far.

	minloaded

	Pick the available resource that has been used the
least so far.

	order

	Pick the first available resource from the list.

	random

	Pick a random resource from the list.

As in TaskJuggler the default for allocation_strategy attribute is
“minallocated”.

Also the allocation of the resources are effected by the
persistent_allocation attribute. The persistent_allocation
attribute refers to the persistent attribute in TJ. The documentation
of persistent in TJ is as follows:

Specifies that once a resource is picked from the list of alternatives
this resource is used for the whole task. This is useful when several
alternative resources have been specified. Normally the selected resource
can change after each break. A break is an interval of at least one
timeslot where no resources were available.

persistent_allocation attribute is True by default.

For a not yet scheduled task the computed_resources attribute will
be the same as the resources list. After the task is scheduled the
content of the computed_resources will purely come from TJ.

Updating the resources list will not update the computed_resources
list if the task is_scheduled.

Task to Task Relation

Note

New in version 0.2.0.

Task to Task Relation

Tasks can have child Tasks. So you can create complex relations of Tasks to
comply with your project needs.

A Task is called a container task if it has at least one child Task.
And it is called a leaf task if it doesn’t have any children Tasks.
Tasks which doesn’t have a parent called root_task.

As opposed to TaskJuggler where the resource information is passed through
parent to child, in Stalker the resources in a container task is
meaningless, cause the resources are defined by the child tasks.

Note

Although, the tjp_task_template variable is not coded in that way in
the default config, if you want to populate resource information through
children tasks as it is in TaskJuggler, you can change the
tjp_task_template variable with a local config.py file. See
configuring stalker

Although the values are not very important after TaskJuggler schedules a
task, the start and end values for a container
task is gathered from the child tasks. The start is equal to the earliest
start value of the children tasks, and the end is equal to the latest end
value of the children tasks. Of course, these values are going to be
ignored by TaskJuggler, but for interactive gantt charts these are good toy
attributes to play with.

Stalker will check if there will be a cycle if one wants to parent a Task
to a child Task of its own or the dependency relation creates a cycle.

In Gantt Charts the computed_start, computed_end and
computed_resources attributes will be used if the task
is_scheduled.

Task Responsible

Note

New in version 0.2.0: Task Responsible

Note

New in version 0.2.5: Multiple Responsible Per Task

Tasks have a responsible which is a list of User instances
who are responsible of the assigned task and all the hierarchy under it.

If a task doesn’t have any responsible, it will start looking to its
parent tasks and will return the responsible of its parent and it will be
an empty list if non of its parents has a responsible.

You can create complex responsibility chains for different branches of
Tasks.

Percent Complete Calculation .. versionadded:: 0.2.0

Tasks can calculate how much it is completed based on the
schedule_seconds and total_logged_seconds attributes.
For a parent task, the calculation is based on the total
schedule_seconds and total_logged_seconds attributes of
their children.

New in version 0.2.14: Because duration tasks do not need time logs there is no way to
calculate the percent complete by using the time logs. And Percent
Complete on a duration task is calculated directly from the
start and end and datetime.datetime.now(pytz.utc).

Even tough, the percent_complete attribute of a task is
100% the task may not be considered as completed, because it may not be
reviewed and approved by the responsible yet.

Task Review Workflow

New in version 0.2.5: Task Review Workflow

Starting with Stalker v0.2.5 tasks are reviewed by their responsible users.
The reviews done by responsible users will set the task status according to
the supplied reviews. Please see the Review class documentation
for more details.

Task Status Workflow

Note

New in version 0.2.5: Task Status Workflow

Task statuses now follow a workflow called “Task Status Workflow”.

The “Task Status Workflow” defines the different statuses that a Task will
have along its normal life cycle. Container and leaf tasks will have
different workflow using nearly the same set of statuses (container tasks
have only 4 statuses where as leaf tasks have 9).

The following diagram shows the status workflow for leaf tasks:

[image: ../_images/Task_Status_Workflow.png]
The workflow defines the following statuses at described situations:

	LEAF TASK STATUS WORKFLOW

	Status Name

	Description

	Waiting For
Dependency (WFD)

	If a task has uncompleted dependencies then it
will have its status to set to WFD. A WFD Task can
not have a TimeLog or a review request can not be
made for it.

	Ready To Start
(RTS)

	A task is set to RTS when there are no
dependencies or all of its dependencies are
completed, so there is nothing preventing it to be
started. An RTS Task can have new TimeLogs. A
review can not be requested at this stage cause no
work is done yet.

	Work In Progress
(WIP)

	A task is set to WIP when a TimeLog has been
created for that task. A WIP task can have new
TimeLogs and a review can be requested for that
task.

	Pending Review
(PREV)

	A task is set to PREV when a new set of Review
instances created for it by using the
Task.request_review() method. And it is
possible to request a review only for a task with
status WIP. A PREV task can not have new TimeLogs
nor a new request can be made because it is in
already in review.

	Has Revision
(HREV)

	A task is set to HREV when one of its Reviews
completed by requesting a review by using the
Review.request_review() method. A HREV Task
can have new TimeLogs, and it will be converted to
a WIP or DREV depending to its dependency task
statuses.

	Dependency Has
Revision (DREV)

	If the dependent task of a WIP, PREV, HREV, DREV
or CMPL task has a revision then the statuses of
the tasks are set to DREV which means both of the
dependee and the dependent tasks can work at the
same time. For a DREV task a review request can
not be made until it is set to WIP again by
setting the depending task to CMPL again.

	On Hold (OH)

	A task is set to OH when the resource needs to
work for another task, and the Task.hold()
is called. An OH Task can be resumed by calling
Task.resume() method and depending to its
Task.time_logs attribute it will have its
status set to RTS or WIP.

	Stopped (STOP)

	A task is set to STOP when no more work needs to
done for that task and it will not be used
anymore. Call Task.stop() method to do it
properly. Only applicable to WIP tasks.

The schedule values of the task will be capped to
current time spent on it, so Task Juggler will not
reserve any more resources for it.

Also STOP tasks are treated as if they are dead.

	Completed (CMPL)

	A task is set to CMPL when all of the Reviews are
completed by approving the task. It is not
possible to create any new TimeLogs and no new
review can be requested for a CMPL Task.

Container “Task Status Workflow” defines a set of statuses where the
container task status will only change according to its children task
statuses:

	CONTAINER TASK STATUS WORKFLOW

	Status Name

	Description

	Waiting For
Dependency (WFD)

	If all of the child tasks are in WFD status then
the container task is also WFD.

	Ready To Start
(RTS)

	A container task is set to RTS when children tasks
have statuses of only WFD and RTS.

	Work In Progress
(WIP)

	A container task is set to WIP when one of its
children tasks have any of the statuses of RTS,
WIP, PREV, HREV, DREV or CMPL.

	Completed (CMPL)

	A container task is set to CMPL when all of its
children tasks are CMPL.

Even though, users are encouraged to use the actions (like
Task.create_time_log(), Task.hold(), Task.stop(),
Task.resume(), Task.request_revision(),
Task.request_review(), Task.approve()) to update the task
statuses , setting the Task.status will also update the dependent
tasks or will check the new status against dependencies or the current
status of the task.

Thus in some situations setting the Task.status will not change
the status of the task. For example, setting the task status to WFD when
there are no dependencies will not update the task status to WFD,
also updating a PREV task status to STOP or HOLD or RTS is not possible.
And it is not possible to set a task to WIP if there are no TimeLogs
entered for that task.

So the task will strictly follow the Task Status Workflow diagram above.

Warning

Dependency Relation in Task Status Workflow

Because the Task Status Workflow heavily effected by the dependent task
statuses, and the main reason of having dependency relation is to let
TaskJuggler to schedule the tasks correctly, and any task status other
than WFD or RTS means that a TimeLog has been created for a task (which
means that you can not change the computed_start anymore), it
is only allowed to change the dependencies of a WFD and RTS tasks.

Warning

Resuming a STOP Task

Resuming a STOP Task will be treated as if a revision has been made to
that task, and all the statuses of the tasks depending to this
particular task will be updated accordingly.

Warning

Initial Status of a Task

New in version 0.2.5.

Because of the Task Status Workflow, supplying a status with the
status argument may not set the status of the Task to the desired
value. A Task starts with WFD status by default, and updated to RTS if
it doesn’t have any dependencies or all of the dependencies are STOP or
CMPL.

Note

New in version 0.2.5.2: Task.path and Task.absolute_path properties

Task instances now have two new properties called path and
absolute_path. The value of these attributes are the
rendered version of the related FilenameTemplate which
has its target_entity_type attribute set to “Task” (or “Asset”,
“Shot” or “Sequence” or anything matching to the derived class name,
so it can be used in Asset, Shot and
Sequences or anything that is derived from Task class) in
the Project that this task belongs to. This property has
been added to make it easier to write custom template codes for
Project Structures.

The path attribute is a repository relative path, where as
the absolute_path is the full path and includs the OS
dependent repository path.

Arguments

	Parameters

	
	project (Project) – A Task which doesn’t have a parent (a root task) should be
created with a Project instance. If it is skipped an no
parent is given then Stalker will raise a RuntimeError. If both
the project and the parent argument contains data and the
project of the Task instance given with parent argument is different than
the Project instance given with the project argument then a
RuntimeWarning will be raised and the project of the parent task will be
used.

	parent (Task) – The parent Task or Project of this Task. Every Task in
Stalker should be related with a Project instance. So if no
parent task is desired, at least a Project instance should be passed as
the parent of the created Task or the Task will be an orphan task and
Stalker will raise a RuntimeError.

	depends ([Task]) – A list of Tasks that this Task is
depending on. A Task can not depend to itself or any other Task which are
already depending to this one in anyway or a CircularDependency error
will be raised.

	resources ([User]) – The Users assigned to this Task. A
Task without any resource can not be scheduled.

	responsible ([User]) – A list of User instances that is responsible
of this task.

	watchers ([User]) – A list of User those are added this Task
instance to their watchlist.

	start (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – The start date and time of this task instance. It is only
used if the schedule_constraint attribute is set to
CONSTRAIN_START or CONSTRAIN_BOTH. The default value
is datetime.datetime.now(pytz.utc).

	end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – The end date and time of this task instance. It is only used if
the schedule_constraint attribute is set to
CONSTRAIN_END or CONSTRAIN_BOTH. The default value is
datetime.datetime.now(pytz.utc).

	schedule_timing (int [https://docs.python.org/3/library/functions.html#int]) – The value of the schedule timing.

	schedule_unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – The unit value of the schedule timing. Should be
one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	schedule_constraint (int [https://docs.python.org/3/library/functions.html#int]) – The schedule constraint. It is the index
of the schedule constraints value in
stalker.config.Config.task_schedule_constraints.

	bid_timing (int [https://docs.python.org/3/library/functions.html#int]) – The initial bid for this Task. It can be used in
measuring how accurate the initial guess was. It will be compared against
the total amount of effort spend doing this task. Can be set to None,
which will be set to the schedule_timing_day argument value if there is
one or 0.

	bid_unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – The unit of the bid value for this Task. Should be one
of the ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	is_milestone (bool [https://docs.python.org/3/library/functions.html#bool]) – A bool (True or False) value showing if this task
is a milestone which doesn’t need any resource and effort.

	priority (int [https://docs.python.org/3/library/functions.html#int]) – It is a number between 0 to 1000 which defines the
priority of the Task. The higher the value the higher its
priority. The default value is 500. Mainly used by TaskJuggler.

Higher priority tasks will be scheduled to an early date or at least will
tried to be scheduled to an early date then a lower priority task (a task
that is using the same resources).

In complex projects, a task with a lower priority task may steal
resources from a higher priority task, this is due to the internals of
TaskJuggler, it tries to increase the resource utilization by letting the
lower priority task to be completed earlier than the higher priority
task. This is done in that way if the lower priority task is dependent of
more important tasks (tasks in critical path or tasks with critical
resources). Read TaskJuggler documentation for more information on how
TaskJuggler schedules tasks.

	allocation_strategy – Defines the allocation strategy for resources
of a task with alternative resources. Should be one of [‘minallocated’,
‘maxloaded’, ‘minloaded’, ‘order’, ‘random’] and the default value is
‘minallocated’. For more information read the Task class
documetation.

	persistent_allocation – Specifies that once a resource is picked from
the list of alternatives this resource is used for the whole task. The
default value is True. For more information read the Task class
documentation.

	good – It is possible to attach a good to this Task to be able to
filter and group them later on.

	
__init__(project=None, parent=None, depends=None, resources=None, alternative_resources=None, responsible=None, watchers=None, start=None, end=None, schedule_timing=1.0, schedule_unit='h', schedule_model=None, schedule_constraint=0, bid_timing=None, bid_unit=None, is_milestone=False, priority=500, allocation_strategy='minallocated', persistent_allocation=True, good=None, **kwargs)

	

Methods

	__init__([project, parent, depends, …])

	

	create_time_log(resource, start, end)

	A helper method to create TimeLogs, this will ease creating TimeLog instances for task.

	hold()

	Pauses the execution of this task by setting its status to OH.

	least_meaningful_time_unit(seconds[, …])

	returns the least meaningful timing unit that corresponds to the given seconds.

	request_review()

	Creates and returns Review instances for each of the responsible of this task and sets the task status to PREV.

	request_revision([reviewer, description, …])

	Requests revision.

	resume()

	Resumes the execution of this task by setting its status to RTS or WIP depending to its time_logs attribute, so if it has TimeLogs then it will resume as WIP and if it doesn’t then it will resume as RTS.

	review_set([review_number])

	returns the reviews with the given review_number, if review_number is skipped it will return the latest set of reviews

	round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

	stop()

	Stops this task.

	to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the schedule_model the value will differ.

	update_parent_statuses()

	updates the parent statuses of this task if any

	update_schedule_info()

	updates the total_logged_seconds and schedule_seconds attributes by using the children info and triggers an update on every children

	update_status_with_children_statuses()

	updates the task status according to its children statuses

	update_status_with_dependent_statuses([removing])

	updates the status by looking at the dependent tasks

	walk_dependencies([method])

	Walks the dependencies of this task

	walk_hierarchy([method])

	Walks the hierarchy of this task.

Attributes

	absolute_path

	the absolute_path attribute

	allocation_strategy

	Please read Task class documentation for details.

	alternative_resources

	The list of Users assigned to this Task as an alternative resource.

	bid_timing

	The value of the initial bid of this Task.

	bid_unit

	The unit of the initial bid of this Task.

	children

	Other Budget instances which are the children of this one.

	computed_duration

	returns the computed_duration as the difference of computed_start and computed_end if there are computed_start and computed_end otherwise returns None

	computed_end

	

	computed_resources

	getter for the _computed_resources attribute

	computed_start

	

	computed_total_seconds

	returns the duration as seconds

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	defaults

	

	dependent_of

	

	depends

	

	description

	Description of this object.

	duration

	Duration of the entity.

	end

	overridden end getter

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	good

	

	good_id

	

	html_class

	

	html_style

	

	id

	

	is_container

	Returns True if the Task has children Tasks

	is_leaf

	Returns True if the Task has no children Tasks

	is_milestone

	Specifies if this Task is a milestone.

	is_root

	Returns True if the Task has no parent

	is_scheduled

	A predicate which returns True if this task has both a computed_start and computed_end values

	level

	Returns the level of this task.

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	open_tickets

	returns the open tickets referencing this task in their links attribute

	parent

	A Task instance which is the parent of this Task.

	parent_id

	

	parents

	Returns all of the parents of this mixed in class starting from the root

	path

	The path attribute will generate a path suitable for placing the files under it.

	percent_complete

	returns the percent_complete based on the total_logged_seconds and schedule_seconds of the task.

	persistent_allocation

	Please read Task class documentation for details.

	plural_class_name

	the plural name of this class

	priority

	An integer number between 0 and 1000 used by TaskJuggler to determine the priority of this Task.

	project

	The owner Project of this task.

	project_id

	The id of the owner Project of this Task.

	query

	

	references

	A list of Link instances given as a reference for this entity.

	remaining_seconds

	returns the remaining amount of efforts, length or duration left in this Task as seconds.

	resources

	The list of Users assigned to this Task.

	responsible

	The responsible of this task.

	review_number

	returns the _review_number attribute value

	reviews

	A list of Review holding the details about the reviews created for this task.

	schedule_constraint

	An integer number showing the constraint schema for this task.

	schedule_model

	Defines the schedule model which is going to be used by TaskJuggler while scheduling this Task.

	schedule_seconds

	returns the total effort, length or duration in seconds, for completeness calculation

	schedule_timing

	It is the value of the schedule timing.

	schedule_unit

	It is the unit of the schedule timing.

	start

	overridden start getter

	status

	The current status of the object.

	status_id

	

	status_list

	

	status_list_id

	

	tags

	A list of tags attached to this object.

	task_dependent_of

	A list of Tasks that this one is being depended by.

	task_depends_to

	A list of Tasks that this one is depending on.

	task_id

	The primary_key attribute for the Tasks table used by SQLAlchemy to map this Task in relationships.

	tasks

	A synonym for the children attribute used by the descendants of the Task class (currently Asset, Shot and Sequence classes).

	thumbnail

	

	thumbnail_id

	

	tickets

	returns the tickets referencing this task in their links attribute

	time_logs

	A list of TimeLog instances showing who and when has spent how much effort on this task.

	tjp_abs_id

	returns the calculated absolute id of this task

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	TaskJuggler representation of this task

	total_logged_seconds

	The total effort spent for this Task.

	total_seconds

	returns the duration as seconds

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	versions

	A list of Version instances showing the files created for this task.

	watchers

	The list of Users watching this Task.

	
absolute_path

	the absolute_path attribute

	
allocation_strategy

	Please read Task class documentation for details.

	
alternative_resources

	The list of Users assigned to this Task as an alternative resource.

	
bid_timing

	The value of the initial bid of this Task. It is an integer or
a float.

	
bid_unit

	The unit of the initial bid of this Task. It is a string value.
And should be one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	
children

	Other Budget instances which are the children of this
one. This attribute along with the parent attribute is used in
creating a DAG hierarchy of tasks.

	
computed_duration

	returns the computed_duration as the difference of computed_start
and computed_end if there are computed_start and computed_end otherwise
returns None

	
computed_resources

	getter for the _computed_resources attribute

	
computed_total_seconds

	returns the duration as seconds

	
create_time_log(resource, start, end)

	A helper method to create TimeLogs, this will ease creating TimeLog
instances for task.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
duration

	Duration of the entity.

It is a datetime.timedelta instance. Showing the difference of
the start and the end. If edited it changes
the end attribute value.

	
end

	overridden end getter

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
hold()

	Pauses the execution of this task by setting its status to OH. Only
applicable to RTS and WIP tasks, any task with other statuses will
raise a ValueError.

	
is_container

	Returns True if the Task has children Tasks

	
is_leaf

	Returns True if the Task has no children Tasks

	
is_milestone

	Specifies if this Task is a milestone.

Milestones doesn’t need any duration, any effort and any resources. It
is used to create meaningful dependencies between the critical stages
of the project.

	
is_root

	Returns True if the Task has no parent

	
is_scheduled

	A predicate which returns True if this task has both a
computed_start and computed_end values

	
classmethod least_meaningful_time_unit(seconds, as_work_time=True)

	returns the least meaningful timing unit that corresponds to the
given seconds. So if:

	as_work_time == True

	seconds % (1 years work time as seconds) == 0 –> ‘y’ else:
seconds % (1 month work time as seconds) == 0 –> ‘m’ else:
seconds % (1 week work time as seconds) == 0 –> ‘w’ else:
seconds % (1 day work time as seconds) == 0 –> ‘d’ else:
seconds % (1 hour work time as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes work time as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	as_work_time == False

	seconds % (1 years as seconds) == 0 –> ‘y’ else:
seconds % (1 month as seconds) == 0 –> ‘m’ else:
seconds % (1 week as seconds) == 0 –> ‘w’ else:
seconds % (1 day as seconds) == 0 –> ‘d’ else:
seconds % (1 hour as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	Parameters

	
	seconds (int [https://docs.python.org/3/library/functions.html#int]) – An integer showing the total seconds to be
converted.

	as_work_time (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the input be considered as work time
or calendar time.

	Returns int, string

	Returns one integer and one string, showing the
timing value and the unit.

	
level

	Returns the level of this task. It is a temporary property and will
be useless when Stalker has its own implementation of a proper Gantt
Chart. Write now it is used by the jQueryGantt.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
open_tickets

	returns the open tickets referencing this task in their links
attribute

	
parent

	A Task instance which is the parent of this Task.
In Stalker it is possible to create a hierarchy of Task.

	
parents

	Returns all of the parents of this mixed in class starting from the
root

	
path

	The path attribute will generate a path suitable for placing the
files under it. It will use the FilenameTemplate class
related to the Project Structure with the
target_entity_type is set to the type of this instance.

	
percent_complete

	returns the percent_complete based on the total_logged_seconds and
schedule_seconds of the task. Container tasks will use info from their
children

	
persistent_allocation

	Please read Task class documentation for details.

	
plural_class_name

	the plural name of this class

	
priority

	An integer number between 0 and 1000 used by TaskJuggler to
determine the priority of this Task. The default value is 500.

	
project

	The owner Project of this task.

It is a read-only attribute. It is not possible to change the owner
Project of a Task it is defined when the Task is created.

	
project_id

	The id of the owner Project of this Task. This
attribute is mainly used by SQLAlchemy to map a Project
instance to a Task.

	
references

	A list of Link instances given as a reference for
this entity.

	
remaining_seconds

	returns the remaining amount of efforts, length or duration left
in this Task as seconds.

	
request_review()

	Creates and returns Review instances for each of the responsible of
this task and sets the task status to PREV.

New in version 0.2.0: Request review will not cap the timing of this task anymore.

Only applicable to leaf tasks.

	
request_revision(reviewer=None, description='', schedule_timing=1, schedule_unit='h')

	Requests revision.

Applicable to PREV or CMPL leaf tasks. This method will expand the
schedule timings of the task according to the supplied arguments.

When request_revision is called on a PREV task, the other NEW Review
instances (those created when request_review on a WIP task is called
and still waiting a review) will be deleted.

This method at the end will return a new Review instance with correct
attributes (reviewer, description, schedule_timing, schedule_unit and
review_number attributes).

	Parameters

	
	reviewer (class:.User) – This is the user that requested the revision. He/she
doesn’t need to be the responsible, anybody that has a Permission to
create a Review instance can request a revision.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – The description of the requested revision.

	schedule_timing (int [https://docs.python.org/3/library/functions.html#int]) – The timing value of the requested revision.
The task will be extended this much of duration. Works along with the
schedule_unit parameter. The default value is 1.

	schedule_unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – The timin unit value of the requested
revision. The task will be extended this much of duration. Works
along with the schedule_timing parameter. The default value is
‘h’ for ‘hour’.

	
resources

	The list of Users assigned to this Task.

	
responsible

	The responsible of this task.

This attribute will return the responsible of this task which is a
list of User instances. If there is no responsible set
for this task, then it will try to find a responsible in its
parents.

	
resume()

	Resumes the execution of this task by setting its status to RTS or
WIP depending to its time_logs attribute, so if it has TimeLogs then it
will resume as WIP and if it doesn’t then it will resume as RTS. Only
applicable to Tasks with status OH.

	
review_number

	returns the _review_number attribute value

	
review_set(review_number=None)

	returns the reviews with the given review_number, if review_number
is skipped it will return the latest set of reviews

	
reviews

	A list of Review holding the details about the reviews
created for this task.

	
classmethod round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Uses stalker.defaults.timing_resolution as the closest number
of seconds to round to.

	Parameters

	dt (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – datetime.datetime object, defaults to now.

Based on Thierry Husson’s answer in Stackoverflow

Stackoverflow : http://stackoverflow.com/a/10854034/1431079

	
schedule_constraint

	An integer number showing the constraint schema for this
task.

Possible values are:

	0

	Constrain None

	1

	Constrain Start

	2

	Constrain End

	3

	Constrain Both

For convenience use stalker.models.task.CONSTRAIN_NONE,
stalker.models.task.CONSTRAIN_START,
stalker.models.task.CONSTRAIN_END,
stalker.models.task.CONSTRAIN_BOTH.

This value is going to be used to constrain the start and end date
values of this task. So if you want to pin the start of a task to a
certain date. Set its schedule_constraint value to
CONSTRAIN_START. When the task is scheduled by TaskJuggler
the start date will be pinned to the start attribute of
this task.

And if both of the date values (start and end) wanted to be pinned
to certain dates (making the task effectively a duration task)
set the desired start and end and then set the
schedule_constraint to CONSTRAIN_BOTH.

	
schedule_model

	Defines the schedule model which is going to be used by
TaskJuggler while scheduling this Task. It has three possible
values; effort, duration, length. effort is the
default value. Each value causes this task to be scheduled in
different ways:

	effort

	If the schedule_model attribute is set to
“effort” then the start and end date values are
calculated so that a resource should spent this much of
work time to complete a Task. For example, a task with
schedule_timing of 4 days, needs 4 working days.
So it can take 4 working days to complete the Task, but it
doesn’t mean that the task duration will be 4 days. If the
resource works overtime then the task will be finished
before 4 days or if the resource will not be available
(due to a vacation) then the task duration can be much
more.

	duration

	The duration of the task will exactly be equal to
schedule_timing regardless of the resource
availability. So the difference between start
and end attribute values are equal to
schedule_timing. Essentially making the task
duration in calendar days instead of working days.

	length

	In this model the duration of the task will exactly be
equal to the given length value in working days regardless
of the resource availability. So a task with the
schedule_timing is set to 4 days will be
completed in 4 working days. But again it will not be
always 4 calendar days due to the weekends or non working
days.

	
schedule_seconds

	returns the total effort, length or duration in seconds, for
completeness calculation

	
schedule_timing

	It is the value of the schedule timing. It is a float
value.

The timing value can either be as Work Time or Calendar Time
defined by the schedule_model attribute. So when the schedule_model
is duration then the value of this attribute is in Calendar Time,
and if the schedule_model is either length or effort then the
value is considered as Work Time.

	
schedule_unit

	It is the unit of the schedule timing. It is a string
value. And should be one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	
start

	overridden start getter

	
status

	The current status of the object.

It is a Status instance which
is one of the Statuses stored in the status_list attribute
of this object.

	
stop()

	Stops this task. It is nearly equivalent to deleting this task. But
this will at least preserve the TimeLogs entered for this task. It is
only possible to stop WIP tasks.

You can use resume() to resume the task.

The only difference between hold() (other than setting the task
to different statuses) is the schedule info, while the hold()
method will preserve the schedule info, stop() will set the schedule
info to the current effort.

So if 2 days of effort has been entered for a 4 days task, when stopped
the task effort will be capped to 2 days, thus TaskJuggler will not try
to reserve any resource for this task anymore.

Also, STOP tasks will be ignored in dependency relations.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
task_dependent_of

	A list of Tasks that this one is being depended by.

A CircularDependencyError will be raised when the task dependency
creates a circular dependency which means it is not allowed to create
a dependency for this Task which is depending on another one which in
some way depends to this one again.

	
task_depends_to

	A list of Tasks that this one is depending on.

A CircularDependencyError will be raised when the task dependency
creates a circular dependency which means it is not allowed to create
a dependency for this Task which is depending on another one which in
some way depends to this one again.

	
task_id

	The primary_key attribute for the Tasks table used by
SQLAlchemy to map this Task in relationships.

	
tasks

	A synonym for the children attribute used by the
descendants of the Task class (currently Asset,
Shot and Sequence classes).

	
tickets

	returns the tickets referencing this task in their links attribute

	
time_logs

	A list of TimeLog instances showing who and when has
spent how much effort on this task.

	
tjp_abs_id

	returns the calculated absolute id of this task

	
tjp_id

	returns TaskJuggler compatible id

	
classmethod to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the
schedule_model the value will differ. So if the schedule_model is
‘effort’ or ‘length’ then the schedule_time and schedule_unit values
are interpreted as work time, if the schedule_model is ‘duration’ then
the schedule_time and schedule_unit values are considered as calendar
time.

	
to_tjp

	TaskJuggler representation of this task

	
total_logged_seconds

	The total effort spent for this Task. It is the sum of all the
TimeLogs recorded for this task as seconds.

	Returns int

	An integer showing the total seconds spent.

	
total_seconds

	returns the duration as seconds

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
update_parent_statuses()

	updates the parent statuses of this task if any

	
update_schedule_info()

	updates the total_logged_seconds and schedule_seconds attributes by
using the children info and triggers an update on every children

	
update_status_with_children_statuses()

	updates the task status according to its children statuses

	
update_status_with_dependent_statuses(removing=None)

	updates the status by looking at the dependent tasks

	Parameters

	removing – The item that is been removing right now, used for the
remove event to overcome the update issue.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
versions

	A list of Version instances showing the files created
for this task.

	
walk_dependencies(method=1)

	Walks the dependencies of this task

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

	
walk_hierarchy(method=0)

	Walks the hierarchy of this task.

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

	
watchers

	The list of Users watching this Task.

stalker.models.task.TaskDependency

[image: Inheritance diagram of stalker.models.task.TaskDependency]

	
class stalker.models.task.TaskDependency(task=None, depends_to=None, dependency_target=None, gap_timing=0, gap_unit='h', gap_model='length')

	Bases: sqlalchemy.ext.declarative.api.Base, stalker.models.mixins.ScheduleMixin

The association object used in Task-to-Task dependency relation

	
__init__(task=None, depends_to=None, dependency_target=None, gap_timing=0, gap_unit='h', gap_model='length')

	

Methods

	__init__([task, depends_to, …])

	

	least_meaningful_time_unit(seconds[, …])

	returns the least meaningful timing unit that corresponds to the given seconds.

	to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the schedule_model the value will differ.

Attributes

	defaults

	

	dependency_target

	The dependency target of the relation.

	depends_to

	

	depends_to_id

	

	gap_model

	An enumeration value one of [“length”, “duration”].

	gap_timing

	A positive float value showing the desired gap between the dependent and dependee tasks.

	gap_unit

	

	metadata

	

	plural_class_name

	the plural name of this class

	query

	

	schedule_constraint

	An integer number showing the constraint schema for this task.

	schedule_model

	Defines the schedule model which is going to be used by TaskJuggler while scheduling this Task.

	schedule_seconds

	Returns the schedule values as seconds, depending on to the schedule_model the value will differ.

	schedule_timing

	It is the value of the gap timing.

	schedule_unit

	It is the unit of the gap timing.

	task

	

	task_id

	

	to_tjp

	TaskJuggler representation of this TaskDependency

	
dependency_target

	The dependency target of the relation. The default value is
“onend”, which will create a dependency between two tasks so that the
depending task will start after the task that it is depending to is
finished.

The dependency_target attribute is updated to “onstart” when a task has
a revision and needs to work together with its depending tasks.

	
gap_model

	An enumeration value one of [“length”, “duration”]. The value of
this attribute defines if the gap value is in Work Time or
Calendar Time. The default value is “length” so the gap value defines
a time interval in work time.

	
gap_timing

	A positive float value showing the desired gap between the
dependent and dependee tasks. The meaning of the gap value, either is
it work time or calendar time is defined by the gap_model
attribute. So when the gap model is “duration” then the value of gap
is in calendar time, if gap is “length” then it is considered as work
time.

	
classmethod least_meaningful_time_unit(seconds, as_work_time=True)

	returns the least meaningful timing unit that corresponds to the
given seconds. So if:

	as_work_time == True

	seconds % (1 years work time as seconds) == 0 –> ‘y’ else:
seconds % (1 month work time as seconds) == 0 –> ‘m’ else:
seconds % (1 week work time as seconds) == 0 –> ‘w’ else:
seconds % (1 day work time as seconds) == 0 –> ‘d’ else:
seconds % (1 hour work time as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes work time as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	as_work_time == False

	seconds % (1 years as seconds) == 0 –> ‘y’ else:
seconds % (1 month as seconds) == 0 –> ‘m’ else:
seconds % (1 week as seconds) == 0 –> ‘w’ else:
seconds % (1 day as seconds) == 0 –> ‘d’ else:
seconds % (1 hour as seconds) == 0 –> ‘h’ else:
seconds % (1 minutes as seconds) == 0 –> ‘min’ else:
raise RuntimeError

	Parameters

	
	seconds (int [https://docs.python.org/3/library/functions.html#int]) – An integer showing the total seconds to be
converted.

	as_work_time (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the input be considered as work time
or calendar time.

	Returns int, string

	Returns one integer and one string, showing the
timing value and the unit.

	
plural_class_name

	the plural name of this class

	
schedule_constraint

	An integer number showing the constraint schema for this
task.

Possible values are:

	0

	Constrain None

	1

	Constrain Start

	2

	Constrain End

	3

	Constrain Both

For convenience use stalker.models.task.CONSTRAIN_NONE,
stalker.models.task.CONSTRAIN_START,
stalker.models.task.CONSTRAIN_END,
stalker.models.task.CONSTRAIN_BOTH.

This value is going to be used to constrain the start and end date
values of this task. So if you want to pin the start of a task to a
certain date. Set its schedule_constraint value to
CONSTRAIN_START. When the task is scheduled by TaskJuggler
the start date will be pinned to the start attribute of
this task.

And if both of the date values (start and end) wanted to be pinned
to certain dates (making the task effectively a duration task)
set the desired start and end and then set the
schedule_constraint to CONSTRAIN_BOTH.

	
schedule_model

	Defines the schedule model which is going to be used by
TaskJuggler while scheduling this Task. It has three possible
values; effort, duration, length. effort is the
default value. Each value causes this task to be scheduled in
different ways:

	effort

	If the schedule_model attribute is set to
“effort” then the start and end date values are
calculated so that a resource should spent this much of
work time to complete a Task. For example, a task with
schedule_timing of 4 days, needs 4 working days.
So it can take 4 working days to complete the Task, but it
doesn’t mean that the task duration will be 4 days. If the
resource works overtime then the task will be finished
before 4 days or if the resource will not be available
(due to a vacation) then the task duration can be much
more.

	duration

	The duration of the task will exactly be equal to
schedule_timing regardless of the resource
availability. So the difference between start
and end attribute values are equal to
schedule_timing. Essentially making the task
duration in calendar days instead of working days.

	length

	In this model the duration of the task will exactly be
equal to the given length value in working days regardless
of the resource availability. So a task with the
schedule_timing is set to 4 days will be
completed in 4 working days. But again it will not be
always 4 calendar days due to the weekends or non working
days.

	
schedule_seconds

	Returns the schedule values as seconds, depending on to the
schedule_model the value will differ. So if the schedule_model is
‘effort’ or ‘length’ then the schedule_time and schedule_unit values
are interpreted as work time, if the schedule_model is ‘duration’ then
the schedule_time and schedule_unit values are considered as calendar
time.

	
schedule_timing

	It is the value of the gap timing. It is a float
value.

The timing value can either be as Work Time or Calendar Time
defined by the gap_model attribute. So when the gap_model
is duration then the value of this attribute is in Calendar Time,
and if the gap_model is either length or effort then the
value is considered as Work Time.

	
schedule_unit

	It is the unit of the gap timing. It is a string
value. And should be one of ‘min’, ‘h’, ‘d’, ‘w’, ‘m’, ‘y’.

	
classmethod to_seconds(timing, unit, model)

	converts the schedule values to seconds, depending on to the
schedule_model the value will differ. So if the schedule_model is
‘effort’ or ‘length’ then the schedule_time and schedule_unit values
are interpreted as work time, if the schedule_model is ‘duration’ then
the schedule_time and schedule_unit values are considered as calendar
time.

	
to_tjp

	TaskJuggler representation of this TaskDependency

stalker.models.task.TimeLog

[image: Inheritance diagram of stalker.models.task.TimeLog]

	
class stalker.models.task.TimeLog(task=None, resource=None, start=None, end=None, duration=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.DateRangeMixin

Holds information about the uninterrupted time spent on a specific
Task by a specific User.

It is so important to note that the TimeLog reports the uninterrupted
time interval that is spent for a Task. Thus it doesn’t care about the
working time attributes like daily working hours, weekly working days or
anything else. Again it is the uninterrupted time which is spent for a
task.

Entering a time log for 2 days will book the resource for 48 hours and not,
2 * daily working hours.

TimeLogs are created per resource. It means, you need to record all the
works separately for each resource. So there is only one resource in a
TimeLog instance.

A TimeLog instance needs to be initialized with a Task
and a User instances.

Adding overlapping time log for a User will raise a
OverBookedError.

	Parameters

	
	task – The Task instance that this time log belongs to.

	resource – The User instance that this time log is created
for.

	
__init__(task=None, resource=None, start=None, end=None, duration=None, **kwargs)

	

Methods

	__init__([task, resource, start, end, duration])

	

	round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Attributes

	computed_duration

	returns the computed_duration as the difference of computed_start and computed_end if there are computed_start and computed_end otherwise returns None

	computed_end

	

	computed_start

	

	computed_total_seconds

	returns the duration as seconds

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	duration

	Duration of the entity.

	end

	The date that the entity should be delivered.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	resource

	The User instance that this time_log is created for

	resource_id

	

	start

	The date that this entity should start.

	tags

	A list of tags attached to this object.

	task

	The Task instance that this time log is created for

	task_id

	The id of the related task.

	thumbnail

	

	thumbnail_id

	

	time_log_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	total_seconds

	returns the duration as seconds

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
computed_duration

	returns the computed_duration as the difference of computed_start
and computed_end if there are computed_start and computed_end otherwise
returns None

	
computed_total_seconds

	returns the duration as seconds

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
duration

	Duration of the entity.

It is a datetime.timedelta instance. Showing the difference of
the start and the end. If edited it changes
the end attribute value.

	
end

	The date that the entity should be delivered.

The end can be set to a datetime.timedelta and in this case it will be
calculated as an offset from the start and converted to
datetime.datetime again. Setting the start to a date passing the end
will also set the end, so the timedelta between them is preserved,
default value is 10 days

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
resource

	The User instance that this time_log is created for

	
classmethod round_time(dt)

	Round the given datetime object to the defaults.timing_resolution.

Uses stalker.defaults.timing_resolution as the closest number
of seconds to round to.

	Parameters

	dt (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – datetime.datetime object, defaults to now.

Based on Thierry Husson’s answer in Stackoverflow

Stackoverflow : http://stackoverflow.com/a/10854034/1431079

	
start

	The date that this entity should start.

Also effects the DateRangeMixin.end attribute value in certain
conditions, if the DateRangeMixin.start is set to a time
passing the DateRangeMixin.end it will also offset the
DateRangeMixin.end to keep the
DateRangeMixin.duration value fixed.
DateRangeMixin.start should be an instance of
class:datetime.datetime and the default value is
datetime.datetime.now(pytz.utc)()

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
task

	The Task instance that this time log is created for

	
task_id

	The id of the related task.

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
total_seconds

	returns the duration as seconds

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.template.FilenameTemplate

[image: Inheritance diagram of stalker.models.template.FilenameTemplate]

	
class stalker.models.template.FilenameTemplate(target_entity_type=None, path=None, filename=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.TargetEntityTypeMixin

Holds templates for filename and path conventions.

FilenameTemplate objects help to specify where to place a Version
related file.

Although, it is mainly used by Stalker to define Version related
file paths and file names to place them in to proper places inside a
Project’s Project.structure, the idea behind is open to
endless possibilities.

Here is an example:

p1 = Project(name="Test Project") # shortened for this example

shortened for this example
s1 = Structure(name="Commercial Project Structure")

this is going to be used by Stalker to decide the :stalker:`.Link`
:stalker:`.Link.filename` and :stalker:`.Link.path` (which is the way
Stalker links external files to Version instances)
f1 = FilenameTemplate(
 name="Asset Version Template",
 target_entity_type="Asset",
 path='$REPO{{project.repository.id}}/{{project.code}}/{%- for parent_task in parent_tasks -%}{{parent_task.nice_name}}/{%- endfor -%}",
 filename="{{version.nice_name}}_v{{"%03d"|format(version.version_number)}}"
)

s1.templates.append(f1)
p1.structure = s1

now because we have defined a FilenameTemplate for Assets,
Stalker is now able to produce a path and a filename for any Version
related to an asset in this project.

	Parameters

	
	target_entity_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The class name that this FilenameTemplate
is designed for. You can also pass the class itself. So both of the
examples below can work:

new_filename_template1 = FilenameTemplate(target_entity_type="Asset")
new_filename_template2 = FilenameTemplate(target_entity_type=Asset)

A TypeError will be raised when it is skipped or it is None and a
ValueError will be raised when it is given as and empty string.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Jinja2 [http://jinja.pocoo.org/docs/] template code which specifies the path of the
given item. It is relative to the repository root. A typical example
could be:

'$REPO{{project.repository.id}}/{{project.code}}/{%- for parent_task in parent_tasks -%}{{parent_task.nice_name}}/{%- endfor -%}'

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Jinja2 [http://jinja.pocoo.org/docs/] template code which specifies the file
name of the given item. It is relative to the
FilenameTemplate.path. A typical example could be:

'{{version.nice_name}}_v{{"%03d"|format(version.version_number)}}'

Could be set to an empty string or None, the default value is None.

It can be None, or an empty string, or it can be skipped.

	
__init__(target_entity_type=None, path=None, filename=None, **kwargs)

	

Methods

	__init__([target_entity_type, path, filename])

	

Attributes

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	filename

	The template code for the file part of the FilenameTemplate.

	filenameTemplate_id

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	path

	The template code for the path of this FilenameTemplate.

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	target_entity_type

	The entity type which this object is valid for.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
filename

	The template code for the file part of the FilenameTemplate.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
path

	The template code for the path of this FilenameTemplate.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
target_entity_type

	The entity type which this object is valid for.

Usually it is set to the TargetClass directly.

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.ticket.Ticket

[image: Inheritance diagram of stalker.models.ticket.Ticket]

	
class stalker.models.ticket.Ticket(project=None, links=None, priority='TRIVIAL', summary=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.StatusMixin

Tickets are the way of reporting errors or asking for changes.

The Stalker Ticketing system is based on Trac Basic Workflow. For more
information please visit Trac Workflow

Trac Workflow:: http://trac.edgewall.org/wiki/TracWorkflow

Stalker Ticket system is very flexible, to customize the workflow please
update the Config.ticket_workflow dictionary.

In the default setup, there are four actions available; accept,
resolve, reopen, reassign, and five statuses available New,
Assigned, Accepted, Reopened, Closed.

	Parameters

	
	project (Project) – The Project that this Ticket is assigned to. A Ticket in
Stalker must be assigned to a Project. project argument can not be
skipped or can not be None.

	summary (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string which contains the title or a short
description of this Ticket.

	priority (enum) – The priority of the Ticket which is an enum value.
Possible values are:

	0 / TRIVIAL

	defect with little or no impact / cosmetic
enhancement

	1 / MINOR

	defect with minor impact / small enhancement

	2 / MAJOR

	defect with major impact / big enhancement

	3 / CRITICAL

	severe loss of data due to the defect or highly
needed enhancement

	4 / BLOCKER

	basic functionality is not available until this
is fixed

	reported_by – An instance of User who created this Ticket.
It is basically a synonym for the SimpleEntity.created_by
attribute.

Changing the Ticket.:attr`.Ticket.status` will create a new
TicketLog instance showing the previous operation.

Even though Tickets needs statuses they don’t need to be supplied a
StatusList nor Status for the Tickets. It will be
automatically filled accordingly. For newly created Tickets the status of
the ticket is NEW and can be changed to other statuses as follows:

Status -> Action -> New Status

NEW -> resolve -> CLOSED
NEW -> accept -> ACCEPTED
NEW -> reassign -> ASSIGNED

ASSIGNED -> resolve -> CLOSED
ASSIGNED -> accept -> ACCEPTED
ASSIGNED -> reassign -> ASSIGNED

ACCEPTED -> resolve -> CLOSED
ACCEPTED -> accept -> ACCEPTED
ACCEPTED -> reassign -> ASSIGNED

REOPENED -> resolve -> CLOSED
REOPENED -> accept -> ACCEPTED
REOPENED -> reassign -> ASSIGNED

CLOSED -> reopen -> REOPENED

actions available:
resolve
reassign
accept
reopen

The Ticket.name is automatically generated by using the
stalker.config.Config.ticket_label attribute and
Ticket.ticket_number. So if defaults are used the first ticket
name will be “Ticket#1” and the second “Ticket#2” and so on. For every
project the number will restart from 1.

Use the Ticket.resolve(), Ticket.reassign(),
Ticket.accept(), Ticket.reopen() methods to change the status
of the current Ticket.

Changing the status of the Ticket will create TicketLog entries
reflecting the change made.

	
__init__(project=None, links=None, priority='TRIVIAL', summary=None, **kwargs)

	

Methods

	__init__([project, links, priority, summary])

	

	accept([created_by])

	accepts the ticket

	del_resolution(*args)

	deletes the timing_resolution

	reassign([created_by, assign_to])

	reassigns the ticket

	reopen([created_by])

	reopens the ticket

	resolve([created_by, resolution])

	resolves the ticket

	set_owner(*args)

	sets owner to the given owner

	set_resolution(*args)

	sets the timing_resolution

Attributes

	comments

	A list of Note instances showing the comments made for this Ticket instance.

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	links

	

	logs

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	number

	The automatically generated number for the tickets.

	owner

	

	owner_id

	

	plural_class_name

	the plural name of this class

	priority

	The priority of the Ticket which is an enum value.

	project

	returns the project attribute

	project_id

	

	query

	

	related_tickets

	A list of other Ticket instances which are related to this one.

	reported_by

	Shows who created this Ticket

	resolution

	

	status

	The current status of the object.

	status_id

	

	status_list

	

	status_list_id

	

	summary

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	ticket_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
accept(created_by=None)

	accepts the ticket

	
comments

	A list of Note instances showing the comments made for
this Ticket instance. It is a synonym for the Ticket.notes
attribute.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
del_resolution(*args)

	deletes the timing_resolution

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
number

	The automatically generated number for the tickets.

	
plural_class_name

	the plural name of this class

	
priority

	The priority of the Ticket which is an enum value.
Possible values are:

	0 / TRIVIAL

	defect with little or no impact / cosmetic
enhancement

	1 / MINOR

	defect with minor impact / small enhancement

	2 / MAJOR

	defect with major impact / big enhancement

	3 / CRITICAL

	severe loss of data due to the defect or highly
needed enhancement

	4 / BLOCKER

	basic functionality is not available until this
is fixed

	
project

	returns the project attribute

	
reassign(created_by=None, assign_to=None)

	reassigns the ticket

	
related_tickets

	A list of other Ticket instances which are related
to this one. Can be used to related Tickets to point to a common
problem. The Ticket itself can not be assigned to this list

	
reopen(created_by=None)

	reopens the ticket

	
reported_by

	Shows who created this Ticket

	
resolve(created_by=None, resolution='')

	resolves the ticket

	
set_owner(*args)

	sets owner to the given owner

	
set_resolution(*args)

	sets the timing_resolution

	
status

	The current status of the object.

It is a Status instance which
is one of the Statuses stored in the status_list attribute
of this object.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.ticket.TicketLog

[image: Inheritance diagram of stalker.models.ticket.TicketLog]

	
class stalker.models.ticket.TicketLog(ticket=None, from_status=None, to_status=None, action=None, **kwargs)

	Bases: stalker.models.entity.SimpleEntity

Holds Ticket.Ticket.status change operations.

	Parameters

	
	ticket (Ticket) – An instance of Ticket which the subject to the
operation.

	from_status – Holds a reference to a Status instance which
is the previous status of the Ticket.

	to_status – Holds a reference to a Status instance which is
the new status of the :class;`.Ticket`.

	operation – An Enumerator holding the type of the operation. Possible
values are: RESOLVE or REOPEN

Operations follow the Track Workflow [http://trac.edgewall.org/wiki/TracWorkflow],

[image: ../_images/original-workflow.png]

	
__init__(ticket=None, from_status=None, to_status=None, action=None, **kwargs)

	

Methods

	__init__([ticket, from_status, to_status, …])

	

Attributes

	action

	

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	defaults

	

	description

	Description of this object.

	entity_groups

	

	entity_type

	

	from_status

	

	from_status_id

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	plural_class_name

	the plural name of this class

	query

	

	thumbnail

	

	thumbnail_id

	

	ticket

	

	ticket_id

	

	ticket_log_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_status

	

	to_status_id

	

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
plural_class_name

	the plural name of this class

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.type.EntityType

[image: Inheritance diagram of stalker.models.type.EntityType]

	
class stalker.models.type.EntityType(name, statusable=False, schedulable=False, accepts_references=False)

	Bases: sqlalchemy.ext.declarative.api.Base

A simple class just to hold the registered class names in Stalker

	
__init__(name, statusable=False, schedulable=False, accepts_references=False)

	

Methods

	__init__(name[, statusable, schedulable, …])

	

Attributes

	accepts_references

	

	dateable

	

	id

	

	metadata

	

	name

	

	plural_class_name

	the plural name of this class

	query

	

	schedulable

	

	statusable

	

	
plural_class_name

	the plural name of this class

stalker.models.type.Type

[image: Inheritance diagram of stalker.models.type.Type]

	
class stalker.models.type.Type(name=None, code=None, target_entity_type=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.TargetEntityTypeMixin, stalker.models.mixins.CodeMixin

Everything can have a type.

New in version 0.1.1: Types

Type is a generalized version of the previous design that defines types for
specific classes.

The purpose of the Type class is just to define a new type for a
specific Entity. For example, you can have a Character
Asset or you can have a Commercial Project or you
can define a Link as an Image etc., to create a new
Type for various classes:

Type(name="Character", target_entity_type="Asset")
Type(name="Commercial", target_entity_type="Project")
Type(name="Image", target_entity_type="Link")

or:

Type(name="Character", target_entity_type=Asset.entity_type)
Type(name="Commercial", target_entity_type=Project.entity_type)
Type(name="Image", target_entity_type=Link.entity_type)

or even better:

Type(name=”Character”, target_entity_type=Asset)
Type(name=”Commercial”, target_entity_type=Project)
Type(name=”Image”, target_entity_type=Link)

By using Types, one can able to sort and group same type of
entities.

Types are generally used in Structures.

	Parameters

	target_entity_type (string) – The string defining the target type of
this Type.

	
__init__(name=None, code=None, target_entity_type=None, **kwargs)

	

Methods

	__init__([name, code, target_entity_type])

	

Attributes

	code

	The code name of this object.

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	target_entity_type

	The entity type which this object is valid for.

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	type_id_local

	

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
code

	The code name of this object.

It accepts strings. Can not be None.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
target_entity_type

	The entity type which this object is valid for.

Usually it is set to the TargetClass directly.

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

stalker.models.version.Version

[image: Inheritance diagram of stalker.models.version.Version]

	
class stalker.models.version.Version(task=None, take_name='Main', inputs=None, outputs=None, parent=None, full_path=None, created_with=None, **kwargs)

	Bases: stalker.models.link.Link, stalker.models.mixins.DAGMixin

Holds information about the created versions (files) for a class:.Task

A Version holds information about the
created files related to a class:.Task. So if one
creates a new version for a file or a sequences of file for a
Task then the information is hold in the
Version instance.

	Parameters

	
	take_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A short string holding the current take name. Takes
in Stalker are used solely for grouping individual versions together.
Versions with the same take_name (of the same Task) are numbered
together. It can be any alphanumeric value (a-zA-Z0-9_). The default is
the string “Main”. When skipped it will use the default value. It can not
start with a number. It can not have white spaces.

	inputs (list of Link) – A list o Link instances, holding the inputs of the
current version. It could be a texture for a Maya file or an image
sequence for Nuke, or anything those you can think as the input for the
current Version.

	outputs (list of Link instances) – A list of Link instances, holding the outputs of
the current version. It could be the rendered image sequences out of Maya
or Nuke, or it can be a Targa file which is the output of a Photoshop
file (*.psd), or anything that you can think as the output which is
created out of this Version.

	task (Task) – A Task instance showing the owner of this Version.

	parent (Version) – A Version instance which is the parent of this
Version. It is mainly used to see which Version is derived from which in
the Version history of a Task.

	
__init__(task=None, take_name='Main', inputs=None, outputs=None, parent=None, full_path=None, created_with=None, **kwargs)

	

Methods

	__init__([task, take_name, inputs, outputs, …])

	

	is_latest_published_version()

	returns True if this is the latest published Version False otherwise

	update_paths()

	updates the path variables

	walk_hierarchy([method])

	Walks the hierarchy of this task.

	walk_inputs([method])

	Walks the inputs of this version

Attributes

	absolute_full_path

	Returns the absolute full path of this version including the repository path of the related project

	absolute_path

	Returns the absolute path.

	children

	Other Budget instances which are the children of this one.

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	created_with

	

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	defaults

	

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	extension

	the extension property

	filename

	the filename property

	full_path

	The full path of the url to the link.

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	inputs

	The inputs of the current version.

	is_container

	Returns True if the Task has children Tasks

	is_leaf

	Returns True if the Task has no children Tasks

	is_published

	

	is_root

	Returns True if the Task has no parent

	latest_published_version

	Returns the last published version.

	latest_version

	returns the Version instance with the highest version number in this series.

	link_id

	

	max_version_number

	returns the maximum version number for this Version :return: int

	metadata

	

	name

	Name of this object

	naming_parents

	returns a list of parents which start from the nearest Asset, Shot or Sequence

	nice_name

	the overridden nice name for Version class

	notes

	All the Notess attached to this entity.

	original_filename

	

	outputs

	The outputs of the current version.

	parent

	A Version instance which is the parent of this Version.

	parent_id

	

	parents

	Returns all of the parents of this mixed in class starting from the root

	path

	the path property

	plural_class_name

	the plural name of this class

	query

	

	tags

	A list of tags attached to this object.

	take_name

	Takes in Versions are used solely for grouping individual versions together.

	task

	The Task instance that this Version is created for.

	task_id

	

	thumbnail

	

	thumbnail_id

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	version_id

	

	version_number

	The version_number attribute is read-only.

	
absolute_full_path

	Returns the absolute full path of this version including the
repository path of the related project

	Returns

	str

	
absolute_path

	Returns the absolute path.

Due to the changes in the project.repository

	Returns

	str

	
children

	Other Budget instances which are the children of this
one. This attribute along with the parent attribute is used in
creating a DAG hierarchy of tasks.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
extension

	the extension property

	
filename

	the filename property

	
full_path

	The full path of the url to the link.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
inputs

	The inputs of the current version.

It is a list of Link instances.

	
is_container

	Returns True if the Task has children Tasks

	
is_latest_published_version()

	returns True if this is the latest published Version False otherwise

	
is_leaf

	Returns True if the Task has no children Tasks

	
is_root

	Returns True if the Task has no parent

	
latest_published_version

	Returns the last published version.

	Returns

	Version

	
latest_version

	returns the Version instance with the highest version number in this
series.

	Returns

	Version instance

	
max_version_number

	returns the maximum version number for this Version
:return: int

	
name

	Name of this object

	
naming_parents

	returns a list of parents which start from the nearest Asset, Shot
or Sequence

	
nice_name

	the overridden nice name for Version class

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
outputs

	The outputs of the current version.

It is a list of Link instances.

	
parent

	A Version instance which is the parent of this Version.
In Stalker it is possible to create a hierarchy of Version.

	
parents

	Returns all of the parents of this mixed in class starting from the
root

	
path

	the path property

	
plural_class_name

	the plural name of this class

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
take_name

	Takes in Versions are used solely for grouping individual
versions together.

	
task

	The Task instance that this Version is created for.

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
update_paths()

	updates the path variables

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

	
version_number

	The version_number attribute is read-only.
Trying to change it will produce an AttributeError.

	
walk_hierarchy(method=0)

	Walks the hierarchy of this task.

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

	
walk_inputs(method=0)

	Walks the inputs of this version

	Parameters

	method – The walk method, 0: Depth First, 1: Breadth First

stalker.models.wiki.Page

[image: Inheritance diagram of stalker.models.wiki.Page]

	
class stalker.models.wiki.Page(title='', content='', project=None, **kwargs)

	Bases: stalker.models.entity.Entity, stalker.models.mixins.ProjectMixin

A simple Wiki page implementation.

Wiki in Stalker are managed per Project. That is, all Wiki pages are
related to a Project.

Stalker wiki pages are very simple in terms of data it holds. It has only
one title and one content an some usual audit info coming
from SimpleEntity and a project coming from
ProjectMixin.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The title of this Page

	content (str [https://docs.python.org/3/library/stdtypes.html#str]) – The content of this page. Can contain any kind of
string literals including HTML tags etc.

	
__init__(title='', content='', project=None, **kwargs)

	

Methods

	__init__([title, content, project])

	

Attributes

	content

	

	created_by

	The User who has created this object.

	created_by_id

	The id of the User who has created this entity.

	date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date and time of this object.

	date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date and time of this object.

	description

	Description of this object.

	entity_groups

	

	entity_id

	

	entity_type

	

	generic_data

	This attribute can hold any kind of data which exists in SOM.

	generic_text

	This attribute can hold any text.

	html_class

	

	html_style

	

	id

	

	metadata

	

	name

	Name of this object

	nice_name

	Nice name of this object.

	notes

	All the Notess attached to this entity.

	page_id

	

	plural_class_name

	the plural name of this class

	project

	The Project instance that this object belongs to.

	project_id

	

	query

	

	tags

	A list of tags attached to this object.

	thumbnail

	

	thumbnail_id

	

	title

	

	tjp_id

	returns TaskJuggler compatible id

	to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler integration.

	type

	The type of the object.

	type_id

	The id of the Type of this entity.

	updated_by

	The User who has updated this object.

	updated_by_id

	The id of the User who has updated this entity.

	
created_by

	The User who has created this object.

	
created_by_id

	The id of the User who has created this entity.

	
date_created

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the creation date
and time of this object.

	
date_updated

	A datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance showing the update date
and time of this object.

	
description

	Description of this object.

	
generic_data

	This attribute can hold any kind of data which exists in SOM.

	
generic_text

	This attribute can hold any text.

	
name

	Name of this object

	
nice_name

	Nice name of this object.

It has the same value with the name (contextually) but with a different
format like, all the white spaces replaced by underscores (“_”), all
the CamelCase form will be expanded by underscore (_) characters and
it is always lower case.

	
notes

	All the Notess attached to this entity.

It is a list of Note instances or an
empty list, setting it to None will raise a TypeError.

	
plural_class_name

	the plural name of this class

	
project

	The Project instance that
this object belongs to.

	
tags

	A list of tags attached to this object.

It is a list of Tag instances which shows
the tags of this object

	
tjp_id

	returns TaskJuggler compatible id

	
to_tjp

	renders a TaskJuggler compliant string used for TaskJuggler
integration. Needs to be overridden in inherited classes.

	
type

	The type of the object.

It is a Type instance with a proper
Type.target_entity_type.

	
type_id

	The id of the Type of this entity. Mainly used by
SQLAlchemy to create a Many-to-One relates between SimpleEntities and
Types.

	
updated_by

	The User who has updated this object.

	
updated_by_id

	The id of the User who has updated this entity.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 stalker	

 	
 	
 stalker.db	

 	
 	
 stalker.exceptions	

 	
 	
 stalker.models	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

_

 	
 	__init__() (stalker.models.asset.Asset method)

 	(stalker.models.auth.AuthenticationLog method)

 	(stalker.models.auth.Group method)

 	(stalker.models.auth.LocalSession method)

 	(stalker.models.auth.Permission method)

 	(stalker.models.auth.Role method)

 	(stalker.models.auth.User method)

 	(stalker.models.budget.Budget method)

 	(stalker.models.budget.BudgetEntry method)

 	(stalker.models.budget.Good method)

 	(stalker.models.budget.Invoice method)

 	(stalker.models.budget.Payment method)

 	(stalker.models.budget.PriceList method)

 	(stalker.models.client.Client method)

 	(stalker.models.client.ClientUser method)

 	(stalker.models.department.Department method)

 	(stalker.models.department.DepartmentUser method)

 	(stalker.models.entity.Entity method)

 	(stalker.models.entity.EntityGroup method)

 	(stalker.models.entity.SimpleEntity method)

 	(stalker.models.format.ImageFormat method)

 	(stalker.models.link.Link method)

 	(stalker.models.message.Message method)

 	(stalker.models.mixins.ACLMixin method)

 	(stalker.models.mixins.CodeMixin method)

 	(stalker.models.mixins.DateRangeMixin method)

 	(stalker.models.mixins.ProjectMixin method)

 	(stalker.models.mixins.ReferenceMixin method)

 	(stalker.models.mixins.ScheduleMixin method)

 	(stalker.models.mixins.StatusMixin method)

 	(stalker.models.mixins.TargetEntityTypeMixin method)

 	(stalker.models.mixins.WorkingHoursMixin method)

 	(stalker.models.note.Note method)

 	(stalker.models.project.Project method)

 	(stalker.models.project.ProjectClient method)

 	(stalker.models.project.ProjectRepository method)

 	(stalker.models.project.ProjectUser method)

 	(stalker.models.repository.Repository method)

 	(stalker.models.review.Daily method)

 	(stalker.models.review.DailyLink method)

 	(stalker.models.review.Review method)

 	(stalker.models.scene.Scene method)

 	(stalker.models.schedulers.SchedulerBase method)

 	(stalker.models.schedulers.TaskJugglerScheduler method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.status.Status method)

 	(stalker.models.status.StatusList method)

 	(stalker.models.structure.Structure method)

 	(stalker.models.studio.Studio method)

 	(stalker.models.studio.WorkingHours method)

 	(stalker.models.tag.Tag method)

 	(stalker.models.task.Task method)

 	(stalker.models.task.TaskDependency method)

 	(stalker.models.task.TimeLog method)

 	(stalker.models.template.FilenameTemplate method)

 	(stalker.models.ticket.Ticket method)

 	(stalker.models.ticket.TicketLog method)

 	(stalker.models.type.EntityType method)

 	(stalker.models.type.Type method)

 	(stalker.models.version.Version method)

 	(stalker.models.wiki.Page method)

A

 	
 	absolute_full_path (stalker.models.version.Version attribute)

 	absolute_path (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.version.Version attribute)

 	accept() (stalker.models.ticket.Ticket method)

 	access (stalker.models.auth.Permission attribute)

 	ACLMixin (class in stalker.models.mixins)

 	action (stalker.models.auth.Permission attribute)

 	
 actions

 	configuration value

 	active_projects (stalker.models.studio.Studio attribute)

 	
 admin_department_name

 	configuration value

 	
 admin_email

 	configuration value

 	
 admin_group_name

 	configuration value

 	
 admin_login

 	configuration value

 	
 	
 admin_name

 	configuration value

 	
 admin_password

 	configuration value

 	allocation_strategy (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	alternative_resources (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	approve() (stalker.models.review.Review method)

 	Asset (class in stalker.models.asset)

 	assets (stalker.models.project.Project attribute)

 	authentication_logs (stalker.models.auth.User attribute)

 	AuthenticationLog (class in stalker.models.auth)

 	
 auto_create_admin

 	configuration value

B

 	
 	bid_timing (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	bid_unit (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	
 	Budget (class in stalker.models.budget)

 	BudgetEntry (class in stalker.models.budget)

C

 	
 	check_password() (stalker.models.auth.User method)

 	children (stalker.models.asset.Asset attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.version.Version attribute)

 	CircularDependencyError

 	class_name (stalker.models.auth.Permission attribute)

 	Client (class in stalker.models.client)

 	ClientUser (class in stalker.models.client)

 	code (stalker.models.asset.Asset attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.type.Type attribute)

 	CodeMixin (class in stalker.models.mixins)

 	comments (stalker.models.ticket.Ticket attribute)

 	company_role (stalker.models.auth.User attribute)

 	computed_duration (stalker.models.asset.Asset attribute)

 	(stalker.models.mixins.DateRangeMixin attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	computed_resources (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	computed_total_seconds (stalker.models.asset.Asset attribute)

 	(stalker.models.mixins.DateRangeMixin attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	
 configuration value

 	actions

 	admin_department_name

 	admin_email

 	admin_group_name

 	admin_login

 	admin_name

 	admin_password

 	auto_create_admin

 	daily_working_hours

 	database_engine_settings

 	database_session_settings

 	date_time_format

 	datetime_unit_names

 	datetime_units

 	datetime_units_to_timedelta_kwargs

 	day_order

 	default_resolution_preset

 	file_size_format

 	filename_template

 	key

 	local_session_data_file_name

 	local_storage_path

 	path_template

 	project_structure

 	resolution_presets

 	sequence_format

 	server_side_storage_path

 	status_bg_color

 	status_fg_color

 	task_duration

 	task_priority

 	task_schedule_constraints

 	task_schedule_models

 	thumbnail_format

 	thumbnail_quality

 	thumbnail_size

 	ticket_label

 	ticket_resolutions

 	ticket_status_order

 	ticket_workflow

 	timing_resolution

 	tj_command

 	tjp_department_template

 	tjp_main_template

 	tjp_project_template

 	tjp_studio_template

 	tjp_task_template

 	tjp_user_template

 	tjp_vacation_template

 	tjp_working_hours_template

 	version_take_name

 	weekly_working_days

 	weekly_working_hours

 	working_hours

 	yearly_working_days

 	
 	content (stalker.models.note.Note attribute)

 	create_time_log() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	created_by (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	created_by_id (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	cut_duration (stalker.models.shot.Shot attribute)

 	cut_in (stalker.models.shot.Shot attribute)

 	cut_out (stalker.models.shot.Shot attribute)

D

 	
 	Daily (class in stalker.models.review)

 	
 daily_working_hours

 	configuration value

 	daily_working_hours (stalker.models.studio.Studio attribute)

 	DailyLink (class in stalker.models.review)

 	
 database_engine_settings

 	configuration value

 	
 database_session_settings

 	configuration value

 	date_created (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	
 date_time_format

 	configuration value

 	date_updated (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	
 	DateRangeMixin (class in stalker.models.mixins)

 	datetime_to_millis() (stalker.models.auth.LocalSession class method)

 	
 datetime_unit_names

 	configuration value

 	
 datetime_units

 	configuration value

 	
 datetime_units_to_timedelta_kwargs

 	configuration value

 	
 day_order

 	configuration value

 	default_json_serializer() (stalker.models.auth.LocalSession class method)

 	
 default_resolution_preset

 	configuration value

 	del_resolution() (stalker.models.ticket.Ticket method)

 	delete() (stalker.models.auth.LocalSession method)

 	Department (class in stalker.models.department)

 	department_role (stalker.models.auth.User attribute)

 	departments (stalker.models.studio.Studio attribute)

 	DepartmentUser (class in stalker.models.department)

 	dependency_target (stalker.models.task.TaskDependency attribute)

 	description (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	device_aspect (stalker.models.format.ImageFormat attribute)

 	duration (stalker.models.asset.Asset attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

E

 	
 	email (stalker.models.auth.User attribute)

 	end (stalker.models.asset.Asset attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	
 	entities (stalker.models.entity.EntityGroup attribute)

 	Entity (class in stalker.models.entity)

 	EntityGroup (class in stalker.models.entity)

 	EntityType (class in stalker.models.type)

 	env_var (stalker.models.repository.Repository attribute)

 	extension (stalker.models.link.Link attribute)

 	(stalker.models.version.Version attribute)

F

 	
 	
 file_size_format

 	configuration value

 	filename (stalker.models.link.Link attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.version.Version attribute)

 	
 filename_template

 	configuration value

 	
 	FilenameTemplate (class in stalker.models.template)

 	finalize_review_set() (stalker.models.review.Review method)

 	find_repo() (stalker.models.repository.Repository class method)

 	fps (stalker.models.project.Project attribute)

 	(stalker.models.shot.Shot attribute)

 	full_path (stalker.models.link.Link attribute)

 	(stalker.models.version.Version attribute)

G

 	
 	gap_model (stalker.models.task.TaskDependency attribute)

 	gap_timing (stalker.models.task.TaskDependency attribute)

 	generic_data (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	generic_text (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	
 	Good (class in stalker.models.budget)

 	goods (stalker.models.budget.PriceList attribute)

 	Group (class in stalker.models.auth)

 	groups (stalker.models.auth.User attribute)

H

 	
 	height (stalker.models.format.ImageFormat attribute)

 	hold() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

I

 	
 	image_format (stalker.models.project.Project attribute)

 	(stalker.models.shot.Shot attribute)

 	ImageFormat (class in stalker.models.format)

 	inactive_projects (stalker.models.studio.Studio attribute)

 	inputs (stalker.models.version.Version attribute)

 	Invoice (class in stalker.models.budget)

 	is_active (stalker.models.project.Project attribute)

 	is_container (stalker.models.asset.Asset attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.version.Version attribute)

 	is_finalized() (stalker.models.review.Review method)

 	is_in_repo() (stalker.models.repository.Repository method)

 	is_latest_published_version() (stalker.models.version.Version method)

 	is_leaf (stalker.models.asset.Asset attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.version.Version attribute)

 	
 	is_milestone (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	is_root (stalker.models.asset.Asset attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.version.Version attribute)

 	is_scheduled (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	is_scheduling_by (stalker.models.studio.Studio attribute)

 	is_scheduling_by_id (stalker.models.studio.Studio attribute)

 	is_stereoscopic (stalker.models.project.Project attribute)

 	is_working_hour() (stalker.models.studio.WorkingHours method)

K

 	
 	
 key

 	configuration value

L

 	
 	last_schedule_message (stalker.models.studio.Studio attribute)

 	last_scheduled_at (stalker.models.studio.Studio attribute)

 	last_scheduled_by (stalker.models.studio.Studio attribute)

 	last_scheduled_by_id (stalker.models.studio.Studio attribute)

 	latest_published_version (stalker.models.version.Version attribute)

 	latest_version (stalker.models.version.Version attribute)

 	least_meaningful_time_unit() (stalker.models.asset.Asset class method)

 	(stalker.models.mixins.ScheduleMixin class method)

 	(stalker.models.review.Review class method)

 	(stalker.models.sequence.Sequence class method)

 	(stalker.models.shot.Shot class method)

 	(stalker.models.task.Task class method)

 	(stalker.models.task.TaskDependency class method)

 	level (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	
 	Link (class in stalker.models.link)

 	link (stalker.models.review.DailyLink attribute)

 	load() (stalker.models.auth.LocalSession method)

 	
 local_session_data_file_name

 	configuration value

 	
 local_storage_path

 	configuration value

 	LocalSession (class in stalker.models.auth)

 	logged_in_user (stalker.models.auth.LocalSession attribute)

 	login (stalker.models.auth.User attribute)

 	LoginError

M

 	
 	make_relative() (stalker.models.repository.Repository method)

 	max_version_number (stalker.models.version.Version attribute)

 	
 	Message (class in stalker.models.message)

 	millis_to_datetime() (stalker.models.auth.LocalSession class method)

N

 	
 	name (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	naming_parents (stalker.models.version.Version attribute)

 	nice_name (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	
 	Note (class in stalker.models.note)

 	notes (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	now (stalker.models.studio.Studio attribute)

 	number (stalker.models.ticket.Ticket attribute)

O

 	
 	open_tickets (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	
 	outputs (stalker.models.version.Version attribute)

 	OverBookedError

P

 	
 	Page (class in stalker.models.wiki)

 	parent (stalker.models.asset.Asset attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.version.Version attribute)

 	parents (stalker.models.asset.Asset attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.version.Version attribute)

 	password (stalker.models.auth.User attribute)

 	path (stalker.models.asset.Asset attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.version.Version attribute)

 	
 path_template

 	configuration value

 	Payment (class in stalker.models.budget)

 	percent_complete (stalker.models.asset.Asset attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	Permission (class in stalker.models.auth)

 	persistent_allocation (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	pixel_aspect (stalker.models.format.ImageFormat attribute)

 	plural_class_name (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Permission attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.client.ClientUser attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.department.DepartmentUser attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.project.ProjectClient attribute)

 	(stalker.models.project.ProjectRepository attribute)

 	(stalker.models.project.ProjectUser attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.DailyLink attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TaskDependency attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.EntityType attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	
 	price_lists (stalker.models.budget.Good attribute)

 	PriceList (class in stalker.models.budget)

 	print_resolution (stalker.models.format.ImageFormat attribute)

 	priority (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.ticket.Ticket attribute)

 	Project (class in stalker.models.project)

 	project (stalker.models.asset.Asset attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.wiki.Page attribute)

 	project_id (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	
 project_structure

 	configuration value

 	ProjectClient (class in stalker.models.project)

 	ProjectMixin (class in stalker.models.mixins)

 	ProjectRepository (class in stalker.models.project)

 	projects (stalker.models.schedulers.TaskJugglerScheduler attribute)

 	(stalker.models.studio.Studio attribute)

 	ProjectUser (class in stalker.models.project)

R

 	
 	reassign() (stalker.models.ticket.Ticket method)

 	record_in (stalker.models.shot.Shot attribute)

 	ReferenceMixin (class in stalker.models.mixins)

 	references (stalker.models.asset.Asset attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	related_tickets (stalker.models.ticket.Ticket attribute)

 	remaining_seconds (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	reopen() (stalker.models.ticket.Ticket method)

 	reported_by (stalker.models.ticket.Ticket attribute)

 	repositories_proxy (stalker.models.project.Project attribute)

 	Repository (class in stalker.models.repository)

 	repository (stalker.models.project.Project attribute)

 	request_review() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	request_revision() (stalker.models.asset.Asset method)

 	(stalker.models.review.Review method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	
 resolution_presets

 	configuration value

 	resolve() (stalker.models.ticket.Ticket method)

 	resource (stalker.models.task.TimeLog attribute)

 	resources (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	
 	responsible (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	responsible_of (stalker.models.auth.User attribute)

 	resume() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	Review (class in stalker.models.review)

 	review_number (stalker.models.asset.Asset attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	review_set (stalker.models.review.Review attribute)

 	review_set() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	reviewer_id (stalker.models.review.Review attribute)

 	reviews (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	Role (class in stalker.models.auth)

 	root_tasks (stalker.models.project.Project attribute)

 	round_time() (stalker.models.asset.Asset class method)

 	(stalker.models.mixins.DateRangeMixin class method)

 	(stalker.models.project.Project class method)

 	(stalker.models.sequence.Sequence class method)

 	(stalker.models.shot.Shot class method)

 	(stalker.models.studio.Studio class method)

 	(stalker.models.task.Task class method)

 	(stalker.models.task.TimeLog class method)

S

 	
 	save() (stalker.models.auth.LocalSession method)

 	Scene (class in stalker.models.scene)

 	schedule() (stalker.models.schedulers.SchedulerBase method)

 	(stalker.models.schedulers.TaskJugglerScheduler method)

 	(stalker.models.studio.Studio method)

 	schedule_constraint (stalker.models.asset.Asset attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TaskDependency attribute)

 	schedule_model (stalker.models.asset.Asset attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TaskDependency attribute)

 	schedule_seconds (stalker.models.asset.Asset attribute)

 	(stalker.models.mixins.ScheduleMixin attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TaskDependency attribute)

 	schedule_timing (stalker.models.asset.Asset attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TaskDependency attribute)

 	schedule_unit (stalker.models.asset.Asset attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TaskDependency attribute)

 	ScheduleMixin (class in stalker.models.mixins)

 	scheduler (stalker.models.studio.Studio attribute)

 	SchedulerBase (class in stalker.models.schedulers)

 	scheduling_started_at (stalker.models.studio.Studio attribute)

 	Sequence (class in stalker.models.sequence)

 	
 sequence_format

 	configuration value

 	sequences (stalker.models.project.Project attribute)

 	
 server_side_storage_path

 	configuration value

 	session_file_full_path() (stalker.models.auth.LocalSession class method)

 	set_owner() (stalker.models.ticket.Ticket method)

 	
 	set_resolution() (stalker.models.ticket.Ticket method)

 	setup() (in module stalker.db)

 	Shot (class in stalker.models.shot)

 	shots (stalker.models.project.Project attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	SimpleEntity (class in stalker.models.entity)

 	source_in (stalker.models.shot.Shot attribute)

 	source_out (stalker.models.shot.Shot attribute)

 	split_in_to_working_hours() (stalker.models.studio.WorkingHours method)

 	stalker.db (module)

 	stalker.exceptions (module)

 	stalker.models (module)

 	start (stalker.models.asset.Asset attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	Status (class in stalker.models.status)

 	status (stalker.models.asset.Asset attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.ticket.Ticket attribute)

 	
 status_bg_color

 	configuration value

 	
 status_fg_color

 	configuration value

 	StatusError

 	statuses (stalker.models.status.StatusList attribute)

 	StatusList (class in stalker.models.status)

 	StatusMixin (class in stalker.models.mixins)

 	stop() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	store_user() (stalker.models.auth.LocalSession method)

 	Structure (class in stalker.models.structure)

 	structure (stalker.models.project.Project attribute)

 	Studio (class in stalker.models.studio)

 	studio (stalker.models.schedulers.SchedulerBase attribute)

 	(stalker.models.schedulers.TaskJugglerScheduler attribute)

T

 	
 	Tag (class in stalker.models.tag)

 	tags (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	take_name (stalker.models.version.Version attribute)

 	target_entity_type (stalker.models.status.StatusList attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.type.Type attribute)

 	TargetEntityTypeMixin (class in stalker.models.mixins)

 	Task (class in stalker.models.task)

 	task (stalker.models.review.Review attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.version.Version attribute)

 	task_dependent_of (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	task_depends_to (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	
 task_duration

 	configuration value

 	task_id (stalker.models.asset.Asset attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	
 task_priority

 	configuration value

 	
 task_schedule_constraints

 	configuration value

 	
 task_schedule_models

 	configuration value

 	TaskDependency (class in stalker.models.task)

 	TaskJugglerScheduler (class in stalker.models.schedulers)

 	tasks (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	
 thumbnail_format

 	configuration value

 	
 thumbnail_quality

 	configuration value

 	
 thumbnail_size

 	configuration value

 	Ticket (class in stalker.models.ticket)

 	
 ticket_label

 	configuration value

 	
 ticket_resolutions

 	configuration value

 	
 ticket_status_order

 	configuration value

 	
 ticket_workflow

 	configuration value

 	TicketLog (class in stalker.models.ticket)

 	tickets (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	time_logs (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	TimeLog (class in stalker.models.task)

 	
 timing_resolution

 	configuration value

 	timing_resolution (stalker.models.studio.Studio attribute)

 	
 tj_command

 	configuration value

 	tjp_abs_id (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	
 tjp_department_template

 	configuration value

 	tjp_id (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	
 tjp_main_template

 	configuration value

 	
 tjp_project_template

 	configuration value

 	
 tjp_studio_template

 	configuration value

 	
 	
 tjp_task_template

 	configuration value

 	
 tjp_user_template

 	configuration value

 	
 tjp_vacation_template

 	configuration value

 	
 tjp_working_hours_template

 	configuration value

 	to_linux_path() (stalker.models.repository.Repository method)

 	to_native_path() (stalker.models.repository.Repository method)

 	to_os_independent_path() (stalker.models.repository.Repository class method)

 	to_osx_path() (stalker.models.repository.Repository method)

 	to_seconds() (stalker.models.asset.Asset class method)

 	(stalker.models.mixins.ScheduleMixin class method)

 	(stalker.models.review.Review class method)

 	(stalker.models.sequence.Sequence class method)

 	(stalker.models.shot.Shot class method)

 	(stalker.models.task.Task class method)

 	(stalker.models.task.TaskDependency class method)

 	to_tjp (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TaskDependency attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	to_tjp() (stalker.models.client.Client method)

 	to_unit() (stalker.models.studio.Studio method)

 	to_windows_path() (stalker.models.repository.Repository method)

 	total_logged_seconds (stalker.models.asset.Asset attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	total_seconds (stalker.models.asset.Asset attribute)

 	(stalker.models.mixins.DateRangeMixin attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	Type (class in stalker.models.type)

 	type (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	type_id (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

U

 	
 	update_defaults() (stalker.models.studio.Studio method)

 	update_parent_statuses() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	update_paths() (stalker.models.version.Version method)

 	update_schedule_info() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	update_status_with_children_statuses() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	update_status_with_dependent_statuses() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	updated_by (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	
 	updated_by_id (stalker.models.asset.Asset attribute)

 	(stalker.models.auth.AuthenticationLog attribute)

 	(stalker.models.auth.Group attribute)

 	(stalker.models.auth.Role attribute)

 	(stalker.models.auth.User attribute)

 	(stalker.models.budget.Budget attribute)

 	(stalker.models.budget.BudgetEntry attribute)

 	(stalker.models.budget.Good attribute)

 	(stalker.models.budget.Invoice attribute)

 	(stalker.models.budget.Payment attribute)

 	(stalker.models.budget.PriceList attribute)

 	(stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	(stalker.models.entity.Entity attribute)

 	(stalker.models.entity.EntityGroup attribute)

 	(stalker.models.entity.SimpleEntity attribute)

 	(stalker.models.format.ImageFormat attribute)

 	(stalker.models.link.Link attribute)

 	(stalker.models.message.Message attribute)

 	(stalker.models.note.Note attribute)

 	(stalker.models.project.Project attribute)

 	(stalker.models.repository.Repository attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.review.Review attribute)

 	(stalker.models.scene.Scene attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.status.Status attribute)

 	(stalker.models.status.StatusList attribute)

 	(stalker.models.structure.Structure attribute)

 	(stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	(stalker.models.tag.Tag attribute)

 	(stalker.models.task.Task attribute)

 	(stalker.models.task.TimeLog attribute)

 	(stalker.models.template.FilenameTemplate attribute)

 	(stalker.models.ticket.Ticket attribute)

 	(stalker.models.ticket.TicketLog attribute)

 	(stalker.models.type.Type attribute)

 	(stalker.models.version.Version attribute)

 	(stalker.models.wiki.Page attribute)

 	User (class in stalker.models.auth)

 	user (stalker.models.auth.AuthenticationLog attribute)

 	user_role (stalker.models.client.Client attribute)

 	(stalker.models.department.Department attribute)

 	users (stalker.models.auth.Group attribute)

 	(stalker.models.studio.Studio attribute)

V

 	
 	vacations (stalker.models.auth.User attribute)

 	(stalker.models.studio.Studio attribute)

 	Version (class in stalker.models.version)

 	version_number (stalker.models.version.Version attribute)

 	
 version_take_name

 	configuration value

 	
 	versions (stalker.models.asset.Asset attribute)

 	(stalker.models.review.Daily attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

W

 	
 	walk_dependencies() (stalker.models.asset.Asset method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	walk_hierarchy() (stalker.models.asset.Asset method)

 	(stalker.models.budget.Budget method)

 	(stalker.models.sequence.Sequence method)

 	(stalker.models.shot.Shot method)

 	(stalker.models.task.Task method)

 	(stalker.models.version.Version method)

 	walk_inputs() (stalker.models.version.Version method)

 	watchers (stalker.models.asset.Asset attribute)

 	(stalker.models.sequence.Sequence attribute)

 	(stalker.models.shot.Shot attribute)

 	(stalker.models.task.Task attribute)

 	
 	watching (stalker.models.auth.User attribute)

 	
 weekly_working_days

 	configuration value

 	weekly_working_days (stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	
 weekly_working_hours

 	configuration value

 	weekly_working_hours (stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

 	width (stalker.models.format.ImageFormat attribute)

 	
 working_hours

 	configuration value

 	working_hours_id (stalker.models.studio.Studio attribute)

 	WorkingHours (class in stalker.models.studio)

 	WorkingHoursMixin (class in stalker.models.mixins)

Y

 	
 	
 yearly_working_days

 	configuration value

 	
 	yearly_working_days (stalker.models.studio.Studio attribute)

 	(stalker.models.studio.WorkingHours attribute)

Table of Contents

	About
	Features

	Installation

	Examples

	Installation
	How to Install Stalker

	Install Python

	Install Stalker
	Installing setuptools with ez_setup:

	Installing Stalker (All OSes):

	Checking the installation of Stalker

	For developers

	Installing a Database

	API Tutorial
	Introduction

	Part I - Basics

	Part II/A - Creating Simple Data

	Part II/B - Querying, Updating and Deleting Data

	Part III - Pipeline

	Part IV - Task & Resource Management

	Part V - Scheduling

	Part VI - Asset Management

	Part VII - Collaboration (not completed)

	Part VIII - Extending SOM (coming)

	Conclusion

	Design
	Introduction

	Concepts
	Stalker Object Model (SOM)

	Inheritance Diagram
	Features

	How To Customize Stalker

	How To Extend SOM

	Creating Data
	Creating a Project

	Create a Task

	Configuring Stalker
	config.py File

	Config Variables

	Upgrading Database
	Introduction

	Instructions

	How To Contribute
	Development Style

	Testing

	Coding Style

	SCM - Git

	Adding Changes

	Stalker Development Roadmap
	Roadmap Based on Versions
	0.1.0:

	0.2.0:

	0.3.0:

	Stalker Changes
	0.2.24

	0.2.23

	0.2.22

	0.2.21

	0.2.20

	0.2.19

	0.2.18

	0.2.17.6

	0.2.17.5

	0.2.17.4

	0.2.17.3

	0.2.17.2

	0.2.17.1

	0.2.17

	0.2.16.4

	0.2.16.3

	0.2.16.2

	0.2.16.1

	0.2.16

	0.2.15.2

	0.2.15.1

	0.2.15

	0.2.14

	0.2.13.3

	0.2.13.2

	0.2.13.1

	0.2.13

	0.2.12.1

	0.2.12

	0.2.11

	0.2.10.5

	0.2.10.4

	0.2.10.3

	0.2.10.2

	0.2.10.1

	0.2.10

	0.2.9.2

	0.2.9.1

	0.2.9

	0.2.8.4

	0.2.8.3

	0.2.8.2

	0.2.8.1.1

	0.2.8.1

	0.2.8

	0.2.7.6

	0.2.7.5

	0.2.7.4

	0.2.7.3

	0.2.7.2

	0.2.7.1

	0.2.7

	0.2.6.14

	0.2.6.13

	0.2.6.12

	0.2.6.11

	0.2.6.10

	0.2.6.9

	0.2.6.8

	0.2.6.7

	0.2.6.6

	0.2.6.5

	0.2.6.4

	0.2.6.3

	0.2.6.2

	0.2.6.1

	0.2.6

	0.2.5.5

	0.2.5.4

	0.2.5.3

	0.2.5.2

	0.2.5.1

	0.2.5

	0.2.4

	0.2.3.5

	0.2.3.4

	0.2.3.3

	0.2.3.2

	0.2.3.1

	0.2.3

	0.2.2.3

	0.2.2.2

	0.2.2.1

	0.2.2

	0.2.1.2

	0.2.1.1

	0.2.1

	0.2.0

	0.2.0.rc5

	0.2.0.rc4

	0.2.0.rc3

	0.2.0.rc2

	0.2.0.rc1

	0.2.0.b9

	0.2.0.b8

	0.2.0.b7

	0.2.0.b6

	0.2.0.b5

	0.2.0.b4

	0.2.0.b3

	0.2.0.b2

	0.2.0.b1

	0.2.0.a10

	0.2.0.a9

	0.2.0.a8

	0.2.0.a7

	0.2.0.a6

	0.2.0.a5

	0.2.0.a4

	0.2.0.a3

	0.2.0.a2

	0.2.0.a1

Inheritance Diagram

Statuses and Status Lists

In Stalker, classes mixed with StatusMixin needs to be created with a
suitable StatusList instance.

Because most of the statusable classes are going to be using the same
Statuses (ex: WIP, Pending Review, Completed etc.) over
and over again, it is much efficient to create those Statuses only once and use
them multiple times by grouping them in StatusLists.

A suitable status list means, the StatusList.target_entity_type is
set to the name of that particular class.

Summary

	stalker.db

	Database module of Stalker.

	stalker.db.setup

	Utility function that helps to connect the system to the given database.

	stalker.exceptions

	Errors for the system.

	stalker.exceptions.CircularDependencyError

	Raised when there is circular dependencies within Tasks

	stalker.exceptions.DBError

	

	stalker.exceptions.LoginError

	Raised when the login information is not correct or not correlate with the data in the database.

	stalker.exceptions.OverBookedError

	Raised when a resource is booked more than once for the same time period

	stalker.exceptions.StatusError

	Raised when the status of an entity is not suitable for the desired action

	stalker.models

	

	stalker.models.asset.Asset

	The Asset class is the whole idea behind Stalker.

	stalker.models.auth.AuthenticationLog

	Keeps track of login/logout dates and the action (login or logout).

	stalker.models.auth.Group

	Creates groups for users to be used in authorization system.

	stalker.models.auth.LocalSession

	A simple temporary session object which simple stores session data.

	stalker.models.auth.Role

	Defines a User role.

	stalker.models.auth.Permission

	A class to hold permissions.

	stalker.models.auth.User

	The user class is designed to hold data about a User in the system.

	stalker.models.budget.Budget

	Manages project budgets

	stalker.models.budget.BudgetEntry

	Manages entries in a Budget.

	stalker.models.budget.Good

	Manages commercial items that is served by the Studio.

	stalker.models.budget.Invoice

	Holds information about invoices

	stalker.models.budget.Payment

	Holds information about the payments.

	stalker.models.budget.PriceList

	Contains CommercialItems to create a list of items that is sold by the Studio.

	stalker.models.department.Department

	The departments that forms the studio itself.

	stalker.models.department.DepartmentUser

	The association object used in Department-to-User relation

	stalker.models.client.Client

	The Client (e.g.

	stalker.models.client.ClientUser

	The association object used in Client-to-User relation

	stalker.models.entity.Entity

	Another base data class that adds tags and notes to the attributes list.

	stalker.models.entity.EntityGroup

	Groups a wide variety of objects together to let one easily reach them.

	stalker.models.entity.SimpleEntity

	The base class of all the others

	stalker.models.format.ImageFormat

	Common image formats for the Projects.

	stalker.models.link.Link

	Holds data about external links.

	stalker.models.message.Message

	The base of the messaging system in Stalker

	stalker.models.mixins.ACLMixin

	A Mixin for adding ACLs to mixed in class.

	stalker.models.mixins.CodeMixin

	Adds code info to the mixed in class.

	stalker.models.mixins.DateRangeMixin

	Adds date range info to the mixed in class.

	stalker.models.mixins.ProjectMixin

	Allows connecting a Project to the mixed in object.

	stalker.models.mixins.ReferenceMixin

	Adds reference capabilities to the mixed in class.

	stalker.models.mixins.ScheduleMixin

	Adds schedule info to the mixed in class.

	stalker.models.mixins.StatusMixin

	Makes the mixed in object statusable.

	stalker.models.mixins.TargetEntityTypeMixin

	Adds target_entity_type attribute to mixed in class.

	stalker.models.mixins.WorkingHoursMixin

	Sets working hours for the mixed in class.

	stalker.models.note.Note

	Notes for any of the SOM objects.

	stalker.models.project.Project

	All the information about a Project in Stalker is hold in this class.

	stalker.models.project.ProjectClient

	The association object used in Client-to-Project relation

	stalker.models.project.ProjectRepository

	The association object for Project to Repository instances

	stalker.models.project.ProjectUser

	The association object used in User-to-Project relation

	stalker.models.repository.Repository

	Manages fileserver/repository related data.

	stalker.models.review.Review

	Manages the Task Review Workflow.

	stalker.models.review.Daily

	Manages data related to Dailies.

	stalker.models.review.DailyLink

	The association object used in Daily-to-Link relation

	stalker.models.scene.Scene

	Stores data about Scenes.

	stalker.models.schedulers.SchedulerBase

	This is the base class for schedulers.

	stalker.models.schedulers.TaskJugglerScheduler

	This is the main scheduler for Stalker right now.

	stalker.models.sequence.Sequence

	Stores data about Sequences.

	stalker.models.shot.Shot

	Manages Shot related data.

	stalker.models.status.Status

	Defines object statutes.

	stalker.models.status.StatusList

	Type specific list of Status instances.

	stalker.models.structure.Structure

	Defines folder structures for Projects.

	stalker.models.studio.Studio

	Manage all the studio information at once.

	stalker.models.studio.WorkingHours

	A helper class to manage Studio working hours.

	stalker.models.tag.Tag

	Use it to create tags for any object available in SOM.

	stalker.models.task.Task

	Manages Task related data.

	stalker.models.task.TaskDependency

	The association object used in Task-to-Task dependency relation

	stalker.models.task.TimeLog

	Holds information about the uninterrupted time spent on a specific Task by a specific User.

	stalker.models.template.FilenameTemplate

	Holds templates for filename and path conventions.

	stalker.models.ticket.Ticket

	Tickets are the way of reporting errors or asking for changes.

	stalker.models.ticket.TicketLog

	Holds Ticket.Ticket.status change operations.

	stalker.models.type.EntityType

	A simple class just to hold the registered class names in Stalker

	stalker.models.type.Type

	Everything can have a type.

	stalker.models.version.Version

	Holds information about the created versions (files) for a class:.Task

	stalker.models.wiki.Page

	A simple Wiki page implementation.

Task Review Workflow

Introduction

All tasks created in Stalker has a purpose and has an aim. It is the duty of
the task resources to accomplish that task and it is the responsibles’ duty to
check if the Task is accomplished correctly. With the Task Review
Workflow Stalker presents a way of reviewing a task.

So lets start describing the workflow.

The Workflow

When a resource of a task spent his/her time reserved for a task and thinks
that this task is complete or even he/she still has time but needs some
direction, the resource (or any resource of that particular task) can request a
review.

When that happens, Stalker creates a Review instance and attaches it
to the task.

A Review instance holds the status of the review (starting from NEW),
and if some revision is requested it will also hold the description of the
revision, the extra time that the reviewer has given for the revision etc. and
the desired states of all the tasks depending to the reviewed tasks.

Lets think that a particular Task has only one responsible, and one resource.
Lets assume the resource has decided to request a review. When it is happened
Stalker creates a Review instance and assigns it to the responsible of that
Task. Then the responsible is responsible for reviewing the Task. It the
responsible thinks that the task is finished then he/she sets the status of the
Review to Approved (APP) (by calling Review.approve()) or if he/she
thinks that still some work needs to be done then he/she sets the status of the
Review to Request Revision (RREV) (by calling :meth:`.Review.request_revision)
and gives some time for the requested work and decides if the tasks depending
to the reviewed task should continue working or should be set on hold (if the
reviewed task was initially a task with status complete).

Lets think that there are multiple responsible for a particular task. Then
when the resource request a review, then Stalker will create a Review instance
for each of the responsible. And even if one of the responsible has requested a
revision then the task will not be considered as completed. And when more than
one responsible request a revision, then the total amount of timing for the
revisions will be added to the task and the resource will continue to work.

Depending Tasks

If a revision request has been made to a completed (CMPL) task with other tasks
depending to it, there are a couple of different scenarios to follow.

Scenario A: There are no dependent tasks to the revised task or none of the
dependent tasks have started yet (all in RTS status). Then according to the
reviewers will the tasks can be set to Dependency Has Revision (DREV) which
allows the resources to continue to work or set to Waiting-For-Dependency
(WFD) which prevents the resources to work on the task.

Scenario B: There are dependent tasks and some of them has started or
completed. Again according to the reviewers will the statuses of the tasks will
follow the following table:

	Initial Status

	Final Status

	WFD

	WFD

	RTS

	WFD

	WIP

	DREV

	PREV

	PREV

	HREV

	DREV

	DREV

	DREV

	OH

	OH

	STOP

	STOP

	CMPL

	DREV

When the revised task approved again and set its status to CMPL, then the
dependent task statuses will be set to their normal statuses again. The
following table shows the statuses that the tasks will have depending to their
time_logs attribute after the depending task is set to CMPL:

	
	DREV

	PREV

	WFD

	OH

	STOP

	Has No TimeLogs

	RTS

	PREV

	RTS

	OH

	STOP

	Has TimeLogs

	WIP

	PREV

	WIP

	OH

	STOP

As you see the task statuses will be restored to their original statuses except
for HREV and CMPL. HREV tasks can not be restored, because even in a normal
situation where there are no revision requested for the dependent task,
creating a new time log will set its status to WIP, and a CMPL task can not be
stored to CMPL status because there were revisions to the depending task so
there should be some work to be done to update this task, so it is restored as
WIP.

The following workflow diagram shows the status workflow, and it is a good idea
to study this to become familiar with the task statuses used in Stalker.

[image: ../../../docs/source/_static/images/Task_Status_Workflow.png]

Revision Counter

Both Task instances and Review instances have an attribute
called review_number. Each Review with the same review_number considered in
the same set of review. It is only possible to have multiple Review instances
with the same review_number value if their reviewer attribute are
different.

The Task.review_number starts from 0 and this represents the base or
initial revision and it is increased by 1 when one of the resources request a
review (by calling Task.request_review()).

A newly created Review instance will have a review_number which is equal to
the value of the Task.review_number + 1 at the time it is created. But it
never will or should be 0 cause this represents the base or initial revision.

So, a Task with review_number 0 has no review yet. A Task with review number is
set to 2 has two sets of reviews.

The best way to create revisions is to use Task.request_review(). This
will ensure that there are enough Review instances created for each
responsible and the review_number attribute of both ends are correctly set.
And the return value of that method should be a list of Review instances.

Each of the responsible should use the supplied methods (
Review.approve() or Review.request_revision()) of the Review
instances according to their reviews. So by using those actions, the
responsible users can both set the status to an appropriate value and if
they’re requesting a revision they also can to set the extra timing info
they’ve given for the revision.

 _static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_images/Task_Status_Workflow.png
LEAF TASK STATUS WORKFLOW

.
task depends[*] approve
or no dependency
S
request_review

5
‘Q_
request_revision

task depends[*].request_revision
-
create_time_log

delete_time_log

%, create_time_log

.

x
‘equest_revision
kS

4 -,
K S
task depends[*].approves,
M) -,

create_time_log

resume,

ol

-approve-

delete_time_log

create_time_log

approve

.

request_revision :
1

.

D

.

’
.

task depends[*] raquest_revision
%

create_time_log

CONTAINER TASK STATUS WORKFLOW
create_time_lo approve
delete_time_log request_revision

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_images/inheritance-0441813082932f76c3fcd7a5dfb8ce0916699513.png
ORMClass

Base

o SimpleEntity

nav.xhtml

 Table of Contents

 		
 Stalker Documentation

 		
 About

 		
 Features

 		
 Installation

 		
 Examples

 		
 Installation

 		
 How to Install Stalker

 		
 Install Python

 		
 Install Stalker

 		
 Installing setuptools with ez_setup:

 		
 Installing Stalker (All OSes):

 		
 Checking the installation of Stalker

 		
 For developers

 		
 Installing a Database

 		
 API Tutorial

 		
 Introduction

 		
 Part I - Basics

 		
 Part II/A - Creating Simple Data

 		
 Part II/B - Querying, Updating and Deleting Data

 		
 Part III - Pipeline

 		
 Part IV - Task & Resource Management

 		
 Part V - Scheduling

 		
 Part VI - Asset Management

 		
 Part VII - Collaboration (not completed)

 		
 Part VIII - Extending SOM (coming)

 		
 Conclusion

 		
 Design

 		
 Introduction

 		
 Concepts

 		
 Stalker Object Model (SOM)

 		
 Inheritance Diagram

 		
 Features

 		
 How To Customize Stalker

 		
 How To Extend SOM

 		
 Creating Data

 		
 Creating a Project

 		
 Create a Task

 		
 Configuring Stalker

 		
 config.py File

 		
 Config Variables

 		
 Upgrading Database

 		
 Introduction

 		
 Instructions

 		
 How To Contribute

 		
 Development Style

 		
 Testing

 		
 Coding Style

 		
 SCM - Git

 		
 Adding Changes

 		
 Stalker Development Roadmap

 		
 Roadmap Based on Versions

 		
 0.1.0:

 		
 0.2.0:

 		
 0.3.0:

 		
 Stalker Changes

 		
 0.2.24

 		
 0.2.23

 		
 0.2.22

 		
 0.2.21

 		
 0.2.20

 		
 0.2.19

 		
 0.2.18

 		
 0.2.17.6

 		
 0.2.17.5

 		
 0.2.17.4

 		
 0.2.17.3

 		
 0.2.17.2

 		
 0.2.17.1

 		
 0.2.17

 		
 0.2.16.4

 		
 0.2.16.3

 		
 0.2.16.2

 		
 0.2.16.1

 		
 0.2.16

 		
 0.2.15.2

 		
 0.2.15.1

 		
 0.2.15

 		
 0.2.14

 		
 0.2.13.3

 		
 0.2.13.2

 		
 0.2.13.1

 		
 0.2.13

 		
 0.2.12.1

 		
 0.2.12

 		
 0.2.11

 		
 0.2.10.5

 		
 0.2.10.4

 		
 0.2.10.3

 		
 0.2.10.2

 		
 0.2.10.1

 		
 0.2.10

 		
 0.2.9.2

 		
 0.2.9.1

 		
 0.2.9

 		
 0.2.8.4

 		
 0.2.8.3

 		
 0.2.8.2

 		
 0.2.8.1.1

 		
 0.2.8.1

 		
 0.2.8

 		
 0.2.7.6

 		
 0.2.7.5

 		
 0.2.7.4

 		
 0.2.7.3

 		
 0.2.7.2

 		
 0.2.7.1

 		
 0.2.7

 		
 0.2.6.14

 		
 0.2.6.13

 		
 0.2.6.12

 		
 0.2.6.11

 		
 0.2.6.10

 		
 0.2.6.9

 		
 0.2.6.8

 		
 0.2.6.7

 		
 0.2.6.6

 		
 0.2.6.5

 		
 0.2.6.4

 		
 0.2.6.3

 		
 0.2.6.2

 		
 0.2.6.1

 		
 0.2.6

 		
 0.2.5.5

 		
 0.2.5.4

 		
 0.2.5.3

 		
 0.2.5.2

 		
 0.2.5.1

 		
 0.2.5

 		
 0.2.4

 		
 0.2.3.5

 		
 0.2.3.4

 		
 0.2.3.3

 		
 0.2.3.2

 		
 0.2.3.1

 		
 0.2.3

 		
 0.2.2.3

 		
 0.2.2.2

 		
 0.2.2.1

 		
 0.2.2

 		
 0.2.1.2

 		
 0.2.1.1

 		
 0.2.1

 		
 0.2.0

 		
 0.2.0.rc5

 		
 0.2.0.rc4

 		
 0.2.0.rc3

 		
 0.2.0.rc2

 		
 0.2.0.rc1

 		
 0.2.0.b9

 		
 0.2.0.b8

 		
 0.2.0.b7

 		
 0.2.0.b6

 		
 0.2.0.b5

 		
 0.2.0.b4

 		
 0.2.0.b3

 		
 0.2.0.b2

 		
 0.2.0.b1

 		
 0.2.0.a10

 		
 0.2.0.a9

 		
 0.2.0.a8

 		
 0.2.0.a7

 		
 0.2.0.a6

 		
 0.2.0.a5

 		
 0.2.0.a4

 		
 0.2.0.a3

 		
 0.2.0.a2

 		
 0.2.0.a1

 		
 stalker.db

 		
 stalker.db.setup

 		
 stalker.exceptions

 		
 stalker.exceptions.CircularDependencyError

 		
 stalker.exceptions.LoginError

 		
 stalker.exceptions.OverBookedError

 		
 stalker.exceptions.StatusError

 		
 stalker.models

 		
 stalker.models.asset.Asset

 		
 stalker.models.auth.AuthenticationLog

 		
 stalker.models.auth.Group

 		
 stalker.models.auth.LocalSession

 		
 stalker.models.auth.Role

 		
 stalker.models.auth.Permission

 		
 stalker.models.auth.User

 		
 stalker.models.budget.Budget

 		
 stalker.models.budget.BudgetEntry

 		
 stalker.models.budget.Good

 		
 stalker.models.budget.Invoice

 		
 stalker.models.budget.Payment

 		
 stalker.models.budget.PriceList

 		
 stalker.models.department.Department

 		
 stalker.models.department.DepartmentUser

 		
 stalker.models.client.Client

 		
 stalker.models.client.ClientUser

 		
 stalker.models.entity.Entity

 		
 stalker.models.entity.EntityGroup

 		
 stalker.models.entity.SimpleEntity

 		
 stalker.models.format.ImageFormat

 		
 stalker.models.link.Link

 		
 stalker.models.message.Message

 		
 stalker.models.mixins.ACLMixin

 		
 stalker.models.mixins.CodeMixin

 		
 stalker.models.mixins.DateRangeMixin

 		
 stalker.models.mixins.ProjectMixin

 		
 stalker.models.mixins.ReferenceMixin

 		
 stalker.models.mixins.ScheduleMixin

 		
 stalker.models.mixins.StatusMixin

 		
 stalker.models.mixins.TargetEntityTypeMixin

 		
 stalker.models.mixins.WorkingHoursMixin

 		
 stalker.models.note.Note

 		
 stalker.models.project.Project

 		
 stalker.models.project.ProjectClient

 		
 stalker.models.project.ProjectRepository

 		
 stalker.models.project.ProjectUser

 		
 stalker.models.repository.Repository

 		
 stalker.models.review.Review

 		
 stalker.models.review.Daily

 		
 stalker.models.review.DailyLink

 		
 stalker.models.scene.Scene

 		
 stalker.models.schedulers.SchedulerBase

 		
 stalker.models.schedulers.TaskJugglerScheduler

 		
 stalker.models.sequence.Sequence

 		
 stalker.models.shot.Shot

 		
 stalker.models.status.Status

 		
 stalker.models.status.StatusList

 		
 stalker.models.structure.Structure

 		
 stalker.models.studio.Studio

 		
 stalker.models.studio.WorkingHours

 		
 stalker.models.tag.Tag

 		
 stalker.models.task.Task

 		
 stalker.models.task.TaskDependency

 		
 stalker.models.task.TimeLog

 		
 stalker.models.template.FilenameTemplate

 		
 stalker.models.ticket.Ticket

 		
 stalker.models.ticket.TicketLog

 		
 stalker.models.type.EntityType

 		
 stalker.models.type.Type

 		
 stalker.models.version.Version

 		
 stalker.models.wiki.Page

_images/inheritance-11026eecd93f5fe4c412ded9c28ec9c34c8b9bd3.png
ProjectMixin

DAGMixin

Budget

StatusMixin

ORMClass

Base

SimpleEntity

o Entity

_images/inheritance-11db510cd1781ed6caf4e9b2f3e31cea17afa304.png
ProjectMixin

Page

ORMClass

Base

SimpleEntity

R

Entity

_images/inheritance-08480522251a42685aa58336e8c0fbba431f0f9b.png
ORMClass

Base

o SimpleEntity

v

TicketLog

_images/inheritance-09913b18535ea03442c935b60104a3aa47b12303.png
ORMClass

Base

o SimpleEntity

Entity

PriceList

_images/inheritance-15cc430ec6deb9469ff58b59280c6cd250159b06.png
ORMClass

Base

o SimpleEntity

Entity

v

WorkingHours

_images/inheritance-182c2a98b34e9ed5c444c1dd659b728c41d6505f.png
StatusMixin

Ticket

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-12be88565dd84724d44e486dd82e9c0e640b1208.png
ORMClass o Base o ProjectRepository

_images/inheritance-159d33dd0cb547edbc10fc562b4427c305bf3cd0.png
ORMClass

Base

» EntityType

_images/inheritance-1a5e71e323cad459309972793d5030ec3f5f6b1d.png
schedulerBase

_images/inheritance-1ca9e058223023df39a97ecb3f8c9dc727109d3d.png
ACLMixin

User

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-210ba226eed8829b8bc7c4cfe94f8f91beb911a1.png
ORMClass

Base

o SimpleEntity

Entity

v

EntityGroup.

_images/inheritance-2ecaeaa08e23a55d8606aa9a65db86740839c52a.png
ProjectMixin

_images/inheritance-393994650b92a6af4b43ec18fbabad44fed08308.png
AmountMixin

ORMClass

Base

SimpleEntity

Entity

Budgetentry

UnitMixin

_images/inheritance-2209c0e0051d80c1e1b5ca0e2be3a47df16f6908.png
DAG

DateRangeMixin

[codeMixin

ReferenceMixin

shot.

Task

ScheduleMixin

ORMClass

Base

.(SimpleEntity

{ ey

_images/inheritance-2be1a2b286cf4a662f093957eb1c953481ff9830.png
ReferenceMixin

_images/inheritance-564802e5f7b3a4648e7580b5975673c0fb01b4b3.png
CodeMixin

Status

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-5ee4509662f2a3d28f31e17f7ea8138d64f5255e.png
ORMClass

Base

+ Clientuser

_images/inheritance-428567f200a594e4a6a031d60ca7dc0d7b98fa3c.png
DAGMixin

o e

ORMClass

Base

SimpleEntity

Entity

Link

_images/inheritance-4f3045868326da32d7974163d97326631b3b0963.png
ORMClass

Base

o SimpleEntity

Entity

Client

_images/inheritance-649f35dc0699af49b5eb38ad94794ef92c69ac23.png
CodeMixin

Repository

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-65a9f5abec03a7851c2828afe375f8c7bde94c10.png
TargetEntityTypeMixin

FilenameTemplate

ORMClass

Base

Simplecntity

v

o Entity

_images/inheritance-6072b5fe5d3bf9be5a0a47c2c7a57fe0e610dc4c.png
SchedulerBase o Taskjugglerscheduler

_images/inheritance-744bacb6c9b18940012a67593ddc2d36ee31b33a.png
DateRangeMixin

WorkingHoursMixin

studio

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-75728dd84a2c3c5033b78658748061d78e45d736.png
AmountMixin

ORMClass

Base

SimpleEntity

Entity

Invoice

_images/inheritance-698bb45a47e6968d25438b25c964fed49326c696.png
scheduleMixin

TaskDependency

ORMClass

] Base

_images/inheritance-70302149632e6a7f39c370a255c6fc32e36adce1.png
CodeMixin

ProjectMixin

Scene

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-7d4d36efde5d4f4110d3f843ed313bacd4adc5a0.png
ACLMixin

Group

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-76c821bd7bc2bf290bddc1f4af441bd13b8fae0e.png
UnitMixin

Good

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-78ea3dff1a09b67d61bc209f28648214d68ff916.png
scheduleMixin

_images/inheritance-8b1ce0eec2e383f863e832c4fb5bfcc34ab74072.png
ORMClass

Base

+ ProjectUser

_images/inheritance-8cc1ae15286374ca8b2b344de41ebd11edcd8d77.png
AmountMixin

ORMClass

Base

SimpleEntity

Entity

T payment

Unitiein

_images/inheritance-7e8f08228a7e8f2233174d48be61b3b379c2a1c0.png
TargetEntityTypeMixin

StatusList

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-84fc7c745cdb4f65991f0a7eb8b4112e7a14d335.png
StatusMixin

_images/inheritance-9f91fc8f5e3076a620c9668d664776eac533e213.png
DAG

DateRangeMixin

ORMClass

Base

v

SimpleEntity

o entity

Task

ReferenceMixin

Asset

CodeMixin

ScheduleMixin

StatusMixin

_images/inheritance-a75e22b054290ba9f569adfe3e68b51f799db148.png
ORMClass

Base

o SimpleEntity

Note

_images/inheritance-91745c1c53147ce41926a15c008b78532a09e993.png
ORMClass

Base

o SimpleEntity

‘AuthenticationLog

_images/inheritance-9a76daf39064435a1062a134365514faee96b273.png
CodeMixin

DateRangeMixin

ReferenceMixin

Project

StatusMixin

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-a95369081af4220abecbe066ab730da8b8af66ad.png
ORMClass

Base

o SimpleEntity

Entity

Role

_images/inheritance-ae5dc633fb087ce1b36fb918ee11a4de9f46d16d.png
ACLMixin

_images/inheritance-b7fd17d01d1c09c3c130d3bd420ed99fe1519efb.png
ORMClass

Base

of Projectclient

_images/inheritance-bc419af599f6a1ee3249fec78a9a6a9e4e7ef40c.png
StatusMixin

ProjectMixin

Daily

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-b314f16e733672f9ec3e0f8e4ff8d0acd2dc401d.png
WorkingHoursMixin

_images/inheritance-b7a27fd8a553481136c15c17425a3b4f0b0b4675.png
DAGMixin

DateRangeMixin

CodeMixin [\~

ReferenceMixin |

Sequence

Task

ScheduleMixin

StatusMixin

ORMClass

Base

SimpleEntity

Entity.

_images/inheritance-c65fc002ff0a3cbf6fa46fe7628d6d3a099b62db.png
ORMClass

Base

o SimpleEntity

Entity

v

ImageFormat

_images/inheritance-cca06b46e9757220e23c3c008f4326ab2bd85aed.png
ORMClass

Base

o SimpleEntity

Tag

_images/inheritance-c2ba7036ba9d77ee53c116bb36f9dcd64de8bd6b.png
ORMClass

Base

o SimpleEntity

Entity

Department

_images/inheritance-c62d92b69e4438b9f836d7d98a33ddf897015ed4.png
DAGMixin

DateRangeMixin

ReferenceMixin

Task

ScheduleM:

StatusMixin

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-d1581a7b21728426f921d71c56af77d1e82bc8b3.png
ORMClass

Base

o SimpleEntity

Entity

Link

_static/images/Task_Status_Workflow.png
LEAF TASK STATUS WORKFLOW

.
task depends[*] approve
or no dependency
S
request_review

5
‘Q_
request_revision

task depends[*].request_revision
-
create_time_log

delete_time_log

%, create_time_log

.

x
‘equest_revision
kS

4 -,
K S
task depends[*].approves,
M) -,

create_time_log

resume,

ol

-approve-

delete_time_log

create_time_log

approve

.

request_revision :
1

.

D

.

’
.

task depends[*] raquest_revision
%

create_time_log

CONTAINER TASK STATUS WORKFLOW
create_time_lo approve
delete_time_log request_revision

_static/up.png

_images/inheritance-b2eda24cc95448ae2b83036a8405bfac087e6d7b.png
CodeMixin

_images/inheritance-e35f3a357758c3eb425869cfe50ef87428adf450.png
ORMClass

Base

o SimpleEntity

Entity

_images/inheritance-e5ce25f630a0f56cc5eb348da143052799a27d88.png
ORMClass

Base

»| Departmentuser

_images/inheritance-db105f904ea0073a9c85d0a010a1512ec332bcac.png
DateRangeMixin

TimeLog

ORMClass

Base

R

SimpleEntity

Entity

_images/inheritance-ddb8f0ecda8c8a3d3aebb1685c820d318685690d.png
LocalSession

_images/inheritance-ecb14fce8ddfa3dc6f134663290aea74020a92f6.png
ORMClass

Base

o SimpleEntity

Entity

Structure

_images/inheritance-f0408dc84447ee0c421865efe5910e1cc6e6a34d.png
TargetEntityTypeMixin

_images/inheritance-e7517bba05c595a3d3fb109f79cd6e1a79f6a1e9.png
CodeMixin

TargetEntity TypeMixin

Type

ORMClass

Base

SimpleEntity

Entity

_images/inheritance-eaa6610d2201745e8c5bceb817c1e03333e16897.png
DateRangeMixin

_images/inheritance-d1944166e7890b65f907883935c8dd2bb8550fd8.png
scheduleMixin

StatusMixin

Review

ORMClass

Base

SimpleEntity

_images/inheritance-daef7f35a34dfa210479727d5fe3c8d3dab982a5.png
StatusMixin

Message

ORMClass

Base

SimpleEntity

Entity

_static/comment-bright.png

_static/ajax-loader.gif

_images/inheritance-f470854a928ffdaa63a3ef1d1e9b665a0d7917ae.png
ORMClass

Base

DailyLink

_images/original-workflow.png
resolve

_images/inheritance-f2d1305f82c3ebf4257e6878ef26f24d3dc5a0b7.png
ORMClass

Base

+ Permission

