Stalker Documentation
Release 0.2.24

Erkan Ozgur Yilmaz

Jan 01, 2020

Contents

About 3
LT Features o v v it e e e e e e e e e e e e e e 3
1.2 Installation e e e e e e e e e e e e e e e e e e e 4
1.3 Examples o e e e e e 4
Installation 7
2.1 HowtolInstall Stalker e 7
2.2 Install Python oo e e e 7
23 Install Stalker e e e e e e e e e e e e 7

2.3.1 Installing setuptools with ez_setup: v i v i i e e e e 7

2.3.2 Installing Stalker (AILOSes): o o i e e e e 8
2.4 Checking the installation of Stalker L L oL 8
2.5 Fordevelopers e 8
2.6 InstallingaDatabase L e 8
API Tutorial 9
3.1 Introduction L e e e e e e e e e e e 9
32 Partl-Basics. o e e e e e e e e e e 9
3.3 PartIl/A -Creating Simple Data e e e e e 11
3.4 PartII/B - Querying, Updating and DeletingData 14
35 Partlll-Pipeline o e 15
3.6 PartIV - Task & Resource Management 15
3.7 Part V-Scheduling e 16
3.8 Part VI- Asset Management o vt it e e e e e e e e e e e e e e e e e 17
3.9 Part VII - Collaboration (not completed) 21
3.10 Part VIII - Extending SOM (coming) o v v vttt i i ettt e 21
301 Conclusion oo e e e e e e e e e e e e 21
Design 23
4.1 Introduction L e e e e e e e e e e 23
4.2 COonCepts . . . o v it e e e 23

4.2.1 Stalker Object Model (SOM) 24
4.3 Inheritance Diagram e e e e e e e e e e e e e e e e e 24

431 Features ¢ v v i it e e e e e e e e 24
44 How To Customize Stalker e e e 25
45 HowToExtend SOM e e 25
4.6 CreatingData L e 25

4.6.1 CreatingaProject e 25

4.62 CreateaTask e 27
Configuring Stalker 29

5.1 configppy File o e e e e e e 29
5.2 Config Variables e e e e e e e e e e e 29
Upgrading Database 39
6.1 Introduction e e e e e e e e e e e e e e 39
6.2 INSIIUCHONS o v ot e 39
How To Contribute 41
7.1 Development Style e e e e e e e e e e e e 41
T2 TeStNZ . . o o v e e e e e e e e e e e e e e 41
7.3 Coding Style e e e e e e e 42
74 SCM-GIt . . . oo e 43
7.5 Adding Changes e e e 43
Stalker Development Roadmap 45
8.1 Roadmap Based on Versions e e e e 45

.11 0.1.0: . oo 45

8. 1.2 0.2.0: . .. 45

.13 03.0: . .. e 45
Stalker Changes 47
0.1 0224 . e e e e e e e 47
0.2 0223 . e e e e e e e 47
0.3 0.2.22 . L e 47
0.4 0221 48
0.5 0.220 e 48
0.6 0.2.19 . . L 48
0.7 0218 . o o e 49
9.8 0.2.17.6 e e e e 50
0.9 0.2.17.5 . . . 50
0.10 0.2.17.4 . . o o e 50
011 0.2.17.3 o o e e e e e e e e e e e e 50
0.12 0.2.17.2 . o o e e e e e e e 51
0.13 0.2.17.1 . . o o e e e e 51
.14 0.2.17 .« o o e e e e 51
0.15 0.2.16.4 o L e 51
0.16 0.2.163 e e 51
017 0.2.16.2 . . o e e e e e e e e e 51
0.18 0.2.16.1 . . o o o e e e e e e e 51
0.19 0.2.16 e e e e e e 52
020 0.2.15.2 . . . 52
021 0.2.15.1 . . o o e e e 52
0.22 02,15 . . o e e e e e e e e 52
0.23 0.2.14 . . L e e e e e e e 52
024 0.2.13.3 . . . L e e 53
0.25 0.2.13.2 . . o 53
026 0.2.13.1 53
027 0.2.13 . L o e 53
0.28 0.2.12.1 . o o e e e e e e 54
0.20 0.2.12 . . L e e e e e e 54
930 0.2.11 . . . o e e e 54
9031 0.2.10.5 . . o o e 55
032 0.2.104 . . o e e 55
0.33 0.2.103 . . L e e 55
0.34 0.2.10.2 . . L e e e e e e 55
0.35 0.2.10.1 .« . o o e e e e e e 55
036 0.2.10 e 55
037 0.2.9.2 . . e 55
038 0.2.9.1 . . . e e 56

9.39
9.40
9.41
9.42
9.43
9.44
9.45
9.46
9.47
9.48
9.49
9.50
9.51
9.52
9.53
9.54
9.55
9.56
9.57
9.58
9.59
9.60
9.61
9.62
9.63
9.64
9.65
9.66
9.67
9.68
9.69
9.70
9.71
9.72
9.73
9.74
9.75
9.76
9.77
9.78
9.79
9.80
9.81
9.82
9.83
9.84
9.85
9.86
9.87
9.88
9.89
9.90
9.91
9.92
9.93
9.94
9.95
9.96

0.2.8.4 . e e e 56
0.2.8.3 . e e e 56
0.2.8.2 . 56
0.2.8.1.1 . e 56
0.2.8. 1 . e e 56
0.2.8 e e e 56
0.2.7.6 .« . e e e e 57
0.2.7. 5 e e 57
0.2.7.4 e 57
0.2.7.3 e e 58
0.2.7.2 e e 58
0.2.7. 1 e e 58
0.2, 7 e e e 58
0.2.6.14 . . . 58
0.2.6.13 . . e e 58
0.2.6.12 . . e e 58
0.2.6.11 . . o e e s 58
0.2.6.10 . . . o e e e e 59
0.2.6.9 . . e 59
0.2.6.8 . . L e 59
0.2.6.7 . e e e 59
0.2.6.6 . . . e e e e 59
0.2.6.5 . . e e e 59
0.2.6.4 . . e e 60
0.2.6.3 . 60
0.2.6.2 . . e 60
0.2.6.1 . . e e 60
0.2.6 . . e e 60
0.2.5.5 e e e 60
0.2.5.4 60
0.2.5.3 L e 61
0.2.5. 2 e e e 61
0.2.5. 1 o e e 61
0.2, e e e 62
0.2.4 . 63
0.2.3.5 e 63
0.2.3.4 e e e e 63
0.2.3.3 L e e 64
0.2.3. 2 e e e 64
0.2. 3.1 e e e 64
0.2.3 64
0.2.2.3 e 64
0.2.2.2 e e e e 64
0.2.2. 1 o e e e 65
0.2, e e e 65
0.2.1.2 65
0.2. 1.1 L e e 65
0.2.1 . e e e 65
0.2.0 . L e e 65
0.2.0.0C5 . L e e e 65
0.2.0.rcd . . e e e e e e 66
0.2.0.1C3 . . L e e e e 66
0.2.0.1C2 . L L e e e 67
0.2.0rcl L L e e e e 67
0.2.0.b9 . . L e e e 67
0.2.0.b8 . . . e e e 67
0.2.0b7 . . o e 67

997 0.2.0.b6 68

9.98 0.2.0.b5 e e 68
9.99 0.2.0.b4 e 68
9.100 0.2.0.b3 e e e e e e 68
9.101 0.2.0.b2 e e e e e e e e 69
0.102 0.2.0.b1 e e 69
0.103 0.2.0.a10 e e e e e 69
0.104 0.2.0.29 e e e e 70
9.105 0.2.0.a8 e e e 70
9.106 0.2.0.a7 e e e e e e e e e 71
0.107 0.2.0.a6 e e e 72
0.108 0.2.0.a5 e e e 72
9.109 0.2.0.a4 e e e e e 73
9.110 0.2.0.a3 e e e e 74
0.111 0.2.0.a2 e e e e e e e 74
0.112 0.2.0.al L e e 75
Index 77

Stalker Documentation, Release 0.2.24

Contents 1

https://travis-ci.org/eoyilmaz/stalker

Stalker Documentation, Release 0.2.24

2 Contents

cHAPTER 1

About

Stalker is an Open Source Production Asset Management (ProdAM) Library designed specifically for Animation
and VFX Studios but can be used for any kind of projects. Stalker is licensed under LGPL v3.

1.1

Features

Stalker has the following features:

Designed for Animation and VFX Studios.
Platform independent.

Default installation handles nearly all the asset and project management needs of an animation and vfx
studio.

Customizable with configuration scripts.

Customizable object model (Stalker Object Model - SOM).

Uses TaskJuggler as the project planing and tracking backend.

Mainly developed for PostgreSQL in mind but SQLite3 is also supported.

Can be connected to all the major 3D animation packages like Maya, Houdini, Nuke, Fusion, Softimage,
Blender etc. and any application that has a Python API. And with applications like Adobe Photoshop
which does not have a direct Python API but supports win32com or comtypes.

Mainly developed for Python 3.0+ and Python 2.7 is fully supported.
Developed with TDD practices.

Stalker is build over these other OpenSource projects:

Python

SQLAIchemy and Alembic
Jinja2

TaskJuggler

Stalker as a library has no graphical Ul, it is a python library that gives you the ability to build your pipeline on
top of it. There are other python packages like the Open Source Pyramid Web Application Stalker Pyramid and

https://github.com/eoyilmaz/stalker_pyramid

Stalker Documentation, Release 0.2.24

the Open Source pipeline library Anima which has PyQt/PySide/PySide2 Uls for applications like Maya, Nuke,
Houdini, Fusion, Photoshop etc.

1.2 Installation

Use:

’pip install stalker

1.3 Examples

Let’s play with Stalker.

Initialize the database and fill with some default data:

from stalker import db
db.setup ()
db.init ()

Create a User:

from stalker.db.session import DBSession

from stalker import User

me = User (
name='Erkan Ozgur Yilmaz',
login="'erkanozgur',
email="my_email@gmail.com',
password="secretpass'

Save the user to database
DBSession.save (me)

Create a Repository for project files to be saved under:

from stalker import Repository

repo = Repository (
name="'Commercial Projects Repository',
windows_path='Z:/Projects’,
linux_path='/mnt/z/Projects’,
osx_path="'/Volumes/Z/Projects'

Create aFilenameTemplate (to be used as file naming convention):

from stalker import FilenameTemplate

task_template = FilenameTemplate (
name='Standard Task Filename Template',
target_entity_type='Task', # This is for files saved for Tasks
path="'{{project.repository.path}}/{{project.code}}/"

'{%—- for parent_task in parent_tasks -%}'

'{{parent_task.nice_name}}/"'

'{%- endfor -%}', # This is Jinja2 template code
filename="'{{version.nice_name}} v{{"%03d"|format (version.version_number) }}'

Create a St ructure that uses this template:

4 Chapter 1. About

https://github.com/eoyilmaz/anima

Stalker Documentation, Release 0.2.24

from stalker import Structure
standard_folder_structure = Structure (
name='Standard Project Folder Structure',
templates=[task_template],
custom_template='{{project.code}}/References' # If you need extra folders

Now create a Project that uses this structure and will be placed under the repository:

from stalker import Project
new_project = Project (
name='Test Project',
code="TP"',
structure=standard_folder_structure,
repositories=[repo], # if you have more than one repository you can do it

Define the project resolution:

from stalker import ImageFormat
hd1080 = ImageFormat (
name="'1080p"',
width=1920,
height=1080

Set the project resolution:

new_project.image_format = hdl080

Save the project and all the other data it is connected to it
DBSession.save (new_project)

Create Assets, Shots and other Tasks:

from stalker import Task, Asset, Shot, Type

define Character asset type
char_type = Type (name='Character', code='CHAR', target_entity_type='Asset')

characterl = Asset (
name="'Character 1',
code="CHARL",
type=char_type,
project=new_project

Save the Asset
DBSession.save (characterl)

model = Task(
name="'Model",
parent=characterl

rigging = Task(
name='Rig',
parent=characterl,
depends=[model], # For project management, define that Rig can not start
before Model ends.

(continues on next page)

1.3. Examples 5

Stalker Documentation, Release 0.2.24

(continued from previous page)

Save the new tasks
DBSession.save ([model, rigging])

A shot and some tasks for it
shot = Shot (
name="'SHO0O01",
code="SHOO1",
project=new_project

Save the Shot
DBSession.save (shot)

animation = Task (
name="'Animation',
parent=shot,

lighting = Task(
name='Lighting',
parent=shot,
depends=[animation], # Lighting can not start before Animation ends,
schedule_timing=1,
schedule_unit='d", # The task expected to take 1 day to complete
resources=[me]

)

DBSession.save ([animation, lighting])

Let’s create versions for the Animation task.

from stalker import Version

new_version = Version (task=animation)
new_version.update_paths () # to render the naming convention template
new_version.extension = '.ma' # let's say that we have created under Maya

Let’s check how the version path is rendered:

assert new_version.absolute_full_path == \
"Z:/Projects/TP/SHOO1l/Animation/SHO01_Animation_Main_v001.ma"
assert new_version.version_number == 1

Create a new version and check that the version number increased automatically:

new_version?2 = Version (task=animation)

new_version2.update_paths () # to render the naming convention template
new_version2.extension = '.ma' # let's say that we have created under Maya
assert new_version2.version_number == 2

See more detailed example in API Tutorial.

6 Chapter 1. About

https://pythonhosted.org/stalker/tutorial.html

CHAPTER 2

Installation

2.1 How to Install Stalker

This document will help you install and run Stalker.

2.2 Install Python

Stalker is completely written with Python, so it requires Python. It currently works with Python version 2.6 and
2.7. So you first need to have Python installed in your system. On Linux and OSX there is a system wide Python
already installed. For Windows, you need to download the Python installer suitable for your Windows operating
system (32 or 64 bit) from Python.org

2.3 Install Stalker

The easiest way to install the latest version of Stalker along with all its dependencies is to use the setuprools.
If your system doesn’t have setuptools (particularly Windows) you need to install sefuptools by using ez_setup
bootstrap script.

2.3.1 Installing setuptools with ez_setup:

These steps are generally needed just for Windows. Linux and OSX users can skip this part.
1. download ez_setup.py

2. run the following command in the command prompt/shell/terminal:

python ez_setup

It will install or build the setuptools if there are no suitable installer for your operating system.

http://www.python.org/
http://peak.telecommunity.com/dist/ez_setup.py

Stalker Documentation, Release 0.2.24

2.3.2 Installing Stalker (All OSes):

After installing the setuptools you can run the following command:

’easy_install -U stalker

Now you have installed Stalker along with all its dependencies.

2.4 Checking the installation of Stalker

If everything went ok you should be able to import and check the version of Stalker by using the Python prompt
like this:

>>> import stalker
>>> stalker._ version_
0.2.21

2.5 For developers

It is highly recommended to create a VirtualEnv specific for Stalker development. So to setup a virtualenv for
Stalker:

’virtualenv --no-site-packages stalker

Then clone the repository (you need git to do that):

cd stalker
git clone https://github.com/eoyilmaz/stalker.git stalker

And then to setup the virtual environment for development:

cd stalker
../bin/python setup.py develop

This command should install any dependent package to the virtual environment.

2.6 Installing a Database

Stalker uses a database to store all the data. The only database backend that doesn’t require any extra installation
is SQLite3. You can setup Stalker to run with an SQLite3 database. But it is much suitable to have a dedi-
cated database server in your studio. And it is recommended to use the same kind of database backend both in
development and production to reduce any compatibility problems and any migration headaches.

Although Stalker is mainly tested and developed on SQLite3, the developers of Stalker are using it in a studio
environment where the main database is PosgreSQL, and it is the recommended database for any application
based on Stalker. But, testing and using Stalker in any other database is encouraged.

See the SQLAIchemy documentation for supported databases.

8 Chapter 2. Installation

http://www.sqlalchemy.org/docs/core/engines.html#supported-dbapis

CHAPTER 3

API Tutorial

3.1 Introduction

Using Stalker along with Python is all about interacting with a database by using the Stalker Object Model (SOM).
Stalker uses the powerful SQLAIchemy ORM.

This tutorial section let you familiarise with the Stalker Python API and Stalker Object Model (SOM). If you used
SQLAIchemy before you will feel at home and if you aren’t you will see that it is fun dealing with databases with
SOM.

3.2 Partl - Basics

Lets say that we just installed Stalker (as you are right now) and want to use Stalker in our first project.

The first thing we are going to learn about is how to connect to the database so we can enter information about our
studio and the projects.

We are going to use a helper script to connect to the default database. Use the following command to connect to
the database:

from stalker import db
db.setup ({"sglalchemy.url": "sqglite:///"})

This will create an in-memory SQLite3 database, which is useless other than testing purposes. To be able to get
more out of Stalker we should give a proper database information. The most basic setup is to use a file based
SQLite3 database:

db.setup ({"sglalchemy.url": "sqglite:///C:/studio.db"}) # assumed Windows

or:

db.setup ({"sglalchemy.url": "sglite:////home/ozgur/studio.db"}) # under linux or,
—~0SX

http://www.sqlalchemy.org/docs/orm/tutorial.html

Stalker Documentation, Release 0.2.24

Note: Although with Stalker v0.2.18 the SQLite3 support is dropped, Stalker can still work with an SQLite3
database. But the suggested database backend is PostgreSQL (preferably PostgreSQL 9.5).

Then if this is the first time you are connecting to the database, then you should initialize the database to create
some default data:

db.init ()

This will create some very important default data required for Stalker to work properly. Although it will not break
anything to call db.init () multiple times it is needed only once (so you don’t need to call it again when you
close your python shell and open up a new and fresh one).

Lets continue by creating a Studio for our self:

from stalker import Studio
my_studio = Studio(
name='My Great Studio'

For now don’t care what a Studio is about. It will be explained later on this tutorial.

Lets continue by creating a User for ourselves in the database. The first thing we need to do is to import the User
class in to the current namespace:

from stalker import User

then create the User object:

me = User (
name="Erkan Ozgur Yilmaz",
login="eoyilmaz",
email="some_email_ address@gmail.comn",
password="secret",
description="This is me"

Now we have just created a user which represents us.

Lets create a new Department to define your department:

from stalker import Department
tds_department = Department (

name="TDs",

description="This is the TDs department"

Now add your user to the department:

’tds_department.users.append(me)

or we can do it by using the User instance:

’me.departments.append(tds_department)

Even if you didn’t do the latter, when you run:

print (me.departments)
you should get something like
[<TDs (Department)>]

We have successfully created a User and a Department and we assigned the user as one of the member of the
TDs Department.

10 Chapter 3. API Tutorial

Stalker Documentation, Release 0.2.24

Because we didn’t tell Stalker to commit the changes, no data has been saved to the database yet. So lets send it
the data to the database:

from stalker.db.session import DBSession
DBSession.add (my_studio)
DBSession.add (me)

DBSession.add (tds_department)
DBSession.commit ()

As you see we have used the DBSession object to send (commit) the data to the database. These information
are stored in the database right now.

Lets try to get something back from the database by querying all the departments, then getting the second one (the
first department is always the “admins” which is created by default) and getting its first members name:

all_departments = Department.query.all()
print (all_departments)

This should print something like

[<admins (Department)>, <TDs (Department)>]
"admins" department is created by default

admins = all_departments|[0]
tds = all_departments[1]

all_users = tds.users # Department.users 1s a synonym for Department.members
they are essentially the same attribute

print (all_users([0])

this should print

<Erkan Ozgur Yilmaz ('eoyilmaz') (User)>

3.3 Part Il/A - Creating Simple Data

Lets say that we have this new commercial project coming and you want to start using Stalker with it. So we need
to create a Project object to hold data about it.

A project instance needs to have a suitable StatusList (see status_and_status_lists_toplevel) and a
Repository instance:

we will reuse the Statuses created by default (in db.init())
from stalker import Status

status_new = Status.query.filter_ by (code="'NEW') .first ()
status_wip = Status.query.filter_by (code="WIP').first ()
status_cmpl = Status.query.filter_ by (code='CMPL") .first ()

Note: When the Stalker database is first initialized (with db.init ()) a set of Statuses for Tasks, Assets,
Shots, Sequences and Tickets are created along with a StatusList for each of the data types. Up to this
point in the tutorial we have used those Statuses (new, wip and cmpl) that are created by default.

For now we have just created generic statuses. These St atus instances can be used with any kind of statusable
objects. The idea behind is to define the statuses only once, and use them in mixtures suitable for different type of
objects. So you can define all the possible Statuses for your entities, then you can create a list of them for specific
type of objects.

Lets create a StatusList suitable for Pro ject instances:

a status list which is suitable for Project instances
from stalker import StatusList, Project

(continues on next page)

3.3. Part Il/A - Creating Simple Data 11

Stalker Documentation, Release 0.2.24

(continued from previous page)

project_statuses = StatusList (
name="Project Status List",
statuses=|[

status_new,
status_wip,
status_cmpl
]I
target_entity_type='Project' # you can also use Project which is the
class itself

So we defined a status list which is suitable for Project instances. As you see we didn’t used all the generic
Statuses in our project_statuses because for a Project object we thought that these statuses are enough.

And finally, the Repository. The Repository (or Repo if you like) is a path in our file server, where we place
files and which is visible to all the workstations/render farmers:

from stalker import Repository

and the repository itself

commercial_repo = Repository(
name="Commercial Repository",
code="CR"

New in version 0.2.24: Starting with Stalker version 0.2.24 Repository instances have stalker.models.
repository.Repository.code attribute to help generating universal paths (both across OSes and different
installations of Stalker).

Repository class will be explained in detail in upcoming sections.

So:

new_project = Project (
name="Fancy Commercial",
code="FC",
status_list=project_statuses,
repositories=[commercial_repo],

So we have created our project now.

Lets enter more information about this new project:

import tzlocal
import datetime
from stalker import ImageFormat

new_project.description = \

"""The commercial 1is about this fancy product. The
client want us to have a shiny look with their
product bla bla bla..."""

new_project.image_format = ImageFormat (
name="HD 1080",
width=1920,
height=1080

new_project.fps = 25
local_tz = tzlocal.get_localzone ()

(continues on next page)

12 Chapter 3. API Tutorial

Stalker Documentation, Release 0.2.24

(continued from previous page)

new_project.end = datetime.datetime (2014,

new_project.users.append (me)

15,

tzinfo=local_tz)

Lets save all the new data to the database:

DBSession.add (new_project)
DBSession.commit ()

As you see, even though we have created multiple objects (new_project, statuses, status lists etc.) we’ve just added
the new_project object to the database, but don’t worry all the related objects will be added to the database.

Note: Starting with Stalker v0.2.18 all the datetime information needs to have timezone information (we’ve used

the local timezone in the example).

A Project generally is group of Tasks that needs to be completed. A Task in Stalker is a type of entity where we
define the total amount of effort need to be done (or the duration or the length of the task, see Task class docu-
mentation) to consider that Task as completed. All of the tasks (leaf tasks in fact, coming next) has resources
which defines the Users who need to work on that task and complete it. These are all explained in Task class

documentation.

For now you just need to now that Assets, Shots and Sequences in Stalker are derived from Task and they
are in fact other type of Tasks or a specialized version of Tasks.

So lets create a Sequence:

from stalker import Sequence

seql = Sequence (
name="Sequence 1",
code="SEQ1",
project=new_project,

And a Sequence generally has Shots:

from stalker import Shot

sh001 = Shot (
name="'SHO001"',
code="SHOO1",
project=new_project,
sequences=[seql]

)

sh002 = Shot (
code="'SH002",
project=new_project,
sequences=[seql]

)

sh003 = Shot (
code="SH003",
project=new_project,
sequences=[seql]

send them to the database:

DBsession.add_all ([sh001, sh002,
DBsession.commit ()

sh003])

3.3. Part Il/A - Creating Simple Data

13

Stalker Documentation, Release 0.2.24

Note: Even though, in this tutorial we have created Shots with one Sequence instance, it is not needed. You
can create Shots without any Sequence instance needed.

For small projects like commercials, you may skip creating a Sequence at all.
For bigger projects, like feature films, it is a very good idea to use Sequences and then group the Shots under them.

But again, a Shot can be connected to multiple sequences, which is useful if your shot, let say, is a kind of flashback
and you will use this shot again without changing it at all, then this feature becomes handy.

3.4 Part II/B - Querying, Updating and Deleting Data

So far we just created some simple data. What about updating them. Let say that we created a new shot with
wrong info:

sh004 = Shot (
code="SHO04",
project=new_project,
sequences=[seql]

)

DBSession.add (sh004)

DBSession.commit ()

and you figured out that you have created and committed a wrong info and you want to correct it:

sh004.code = "SHOOSL"
DBsession.commit ()

later on lets say you wanted to get the shot back from database:

first find the data
wrong_shot = Shot.query.filter_by (code="SHO05").first ()

now update it
wrong_shot.code = "SHO04"

commit the changes to the database
DBsession.commit ()

and let say that you decided to delete the data:

DBsession.delete (wrong_shot)
DBsession.commit ()

If you don’t close your python session, your variable are still going to contain the data but they do not exist in the
database anymore:

wrong_shot = Shot.query.filter_ by (code="SHO05") .first ()
print (wrong_shot)
should print None

for more info about update and delete options (like cascades) in SQLAIchemy please see the SQLAlchemy docu-
mentation.

14 Chapter 3. API Tutorial

http://www.sqlalchemy.org/docs/orm/session.html
http://www.sqlalchemy.org/docs/orm/session.html

Stalker Documentation, Release 0.2.24

3.5 Part lll - Pipeline

Up until now, we skipped a lot of stuff here to take little steps every time. Even tough we have created users,
departments, projects, sequences and shots, Stalker still doesn’t know much about our studio. For example, it
doesn’t have any information about the pipeline that we are following and what steps we do to complete those
shots, thus to complete the project.

In Stalker, pipeline is managed by Tasks. So you create Tasks for Shots and then you can create dependencies
between tasks.

So lets create a couple of tasks for one of the shots we have created before:

from stalker import Task

previs = Task(
name="Previs",
parent=sh001

matchmove = Task(
name="Matchmove",
parent=sh001

anim = Task(
name="Animation",
parent=sh001

lighting = Task(
name="Lighting",
parent=sh001

comp = Task (

name="comp",
parent=sh001

Now create the dependencies between them:

comp.depends = [lighting]
lighting.depends = [anim]
anim.depends = [previs, matchmove]

Stalker uses this dependency relation in scheduling these tasks. That is by appending “lighting” task as one of the
dependencies of comp, Stalker now know that lighting should be completed to let the resource of the comp task
start working. The “Task Scheduling” will be explained in detail later on in this tutorial.

3.6 Part IV - Task & Resource Management

Now we have a couple of Shots with couple of tasks inside it but we didn’t assign the tasks to anybody to let them
complete this job.

Lets assign all this stuff to our self (for now :)):

previs.resources = [me]
previs.schedule_timing = 10
previs.schedule_unit = 'd’

(continues on next page)

3.5. Part lll - Pipeline 15

Stalker Documentation, Release 0.2.24

(continued from previous page)

matchmove.resources = [me]
matchmove.schedule_timing = 2
matchmove.schedule_unit = 'd’
anim.resources = [me]
anim.schedule_timing = 5
anim.schedule_unit = 'd'
lighting.resources = [me]
lighting.schedule_timing = 3
lighting.schedule_unit = 'd'
comp.resources = [me]
comp.schedule_timing 6
comp.schedule_unit = 'h'

Now Stalker knows the hierarchy of the tasks and how much effort is needed to complete this tasks. Stalker will
use this information to solve the Scheduling problem, and will tell you when to start and complete this tasks.

Lets commit the changes again:

DBsession.commit ()

If you noticed, this time we didn’t add anything to the session, cause we have added the sh001 in a previous
commit, and because all the objects are attached to this shot object in some way, all the changes has been tracked
and added to the database.

3.7 Part V - Scheduling

In previous sections of this tutorial we have created a Shot and then created a couple of Tasks to this shot and
then assigned our self as the resource of these tasks.

Stalker knows enough about our little project now, but we don’t know where to start the project from. That is
which task should we start from.

In Stalker, defining the start and end dates of a Task (also of an Asset, Shot and Sequence) is called “Scheduling”.
Stalker, with the help of TaskJuggler, can solve this problem and define when the resource should work on a
specific task.

Warning: You should have TaskJuggler installed in your system, and you should have configured your Stalker
installation to be able to find the t 73 executable.

On a linux system this should be fairly straight forward, just install TaskJuggler and stalker will be able to use
it.

But for other OSes, like OSX and Windows, you should create an environment variable called
STALKER_PATH and then place a file called config.py inside the folder that this path is pointing at.
And then add the following to this config.py:

’tj_command = 'C:\\Path\\to\\tj3.exe" ‘

The default value for t j_command config variable is /usr/local/bin/tj3, so if on a Linux or OSX
system when you run:

’which t3j3 ‘

is returning this value (/usr/local/bin/t j3) you don’t need to setup anything.

So, lets schedule our project by using the Studio instance that we have created at the beginning of this tutorial:

16 Chapter 3. API Tutorial

http://www.taskjuggler.org/
http://www.taskjuggler.org/
http://www.taskjuggler.org/

Stalker Documentation, Release 0.2.24

from stalker import TaskJugglerScheduler

my_studio.scheduler = TaskJugglerScheduler ()
my_studio.duration = datetime.timedelta (days=365)
my_studio.schedule (scheduled_by=me)

we are setting the
duration to 1 year just
to be sure that TJ3

will not complain

about the project is not
fitting in to the time
frame.

FH oW H H I W H

DBsession.commit () # to reflect the change

This should take a little while depending to your projects size (around 1-2 seconds for this tutorial, but around ~15
min for a project with 15000+ tasks).

When it is finished all of your tasks now have their computed_start and computed_end values filled with
proper data. Now check the start and end values:

print (previs.computed_start) # 2014-04-02 16:00:00
print (previs.computed_end) # 2014-04-15 15:00:00

print (matchmove.computed_start) # 2014-04-15 15:00:00

print (matchmove.computed_end) # 2014-04-17 13:00:00
print (anim.computed_start) # 2014-04-17 13:00:00
print (anim.computed_end) # 2014-04-23 17:00:00
print (lighting.computed_start) # 2014-04-23 17:00:00
print (lighting.computed_end) # 2014-04-24 11:00:00
print (comp.computed_start) # 2014-04-24 11:00:00
print (comp.computed_end) # 2014-04-24 17:00:00

The dates are probably going to be different in your computer. But as you see Stalker has computed the start and
end date values for each of the tasks. They are simply following one other, this is because we have entered only
one resource for each of the task.

You should know that “Scheduling” is a huge concept and it is greatly explained in TaskJuggler documentation.

For a last thing you can check the to_t jp values of each data we have created for now, so try running:

print (my_studio.to_tjp)
print (me.to_tijp)

print (comp.to_tjp)

print (new_project.to_tijp)

If you are familiar with TaskJuggler, you should recognize the output of each to_t jp variable. So essentially
Stalker is mapping all of its data to a TaskJuggler compatible string. A very small part of TaskJuggler directives
are currently supported. But it is enough to schedule very complex projects with complex dependency relation
and Task hierarchies. And with every new version of Stalker the supported TaskJuggler directives are expanded.

3.8 Part VI - Asset Management

Now we have created a lot of things but other then storing all the data in the database, we didn’t do much. Stalker
still doesn’t have information about a lot of things. For example, it doesn’t know how to handle your asset versions
(Version) namely it doesn’t know how to store your data that you are going to create while completing these
tasks.

So what we need to define is a place in our file structure. It doesn’t need to be a network shared directory but if
you are not working alone than it means that everyone needs to reach your data and the simplest way to do this is

3.8. Part VI - Asset Management 17

http://www.taskjuggler.org/

Stalker Documentation, Release 0.2.24

to place your files in a network share, there are other alternatives like storing your files locally and sharing your
revisions with a Software Configuration Management (SCM) system, Stalker doesn’t support the latter right now.

We are going to see the first alternative, which uses a network share in our fileserver, and this network share is
called a Repository in Stalker.

A repository is a file path, preferably a path which is mapped or mounted to the same path on every computer in
your studio (also you can use aut ofs with an OpenLDAP server in which you can synchronize all off the mount
points on all of your workstations and render slaves at once).

In Stalker, you can have several repositories, let say one for Commercials and another one for each big Movie
projects.

You can define repositories and assign projects to those repositories.

We have already created a repository while creating our first project. But the repository has missing information.
A Repository object shows the path that we create our projects into. Lets enter the paths for all the major operating
systems:

commercial_repo.linux_path = "/mnt/M/commercials"
commercial_repo.osx_path = "/Volumes/M/commercials"
commercial_repo.windows_path = "M:/commercials" # you can use reverse

slashes (\\) if you want

And if you ask for the path to a repository object it will always give the correct answer according to your operating
system:

print (commercial_repo.path)
under Windows outputs:
M:/commercials

in Linux and variants:
/mnt/M/commercials

and in OSX:
/Volumes/M/commercials

Note: Stalker always uses forward slashes no matter what operating system you are using. It is like that even if
you define your paths with reverse slashes (\).

Assigning this repository to our project is not enough, Stalker still doesn’t know about the directory structure of
this project. To explain the project structure to Stalker we use a St ructure instance:

from stalker import Structure
commercial_project_structure = Structure (

name="Commercial Projects Structure"

now assign this structure to our project
new_project.structure = commercial_project_structure

New in version 0.2.13: Starting with Stalker version 0.2.13 Pro ject instances can have multiple Repository
instances attached. So you can create complex templates where you can for example store published versions on
a different server/network share or you can setup so the outputs of a version (like the rendered files) are stored on
a different server, and etc.

The following examples are updated in a simple way and examples showing the advantage of having multiple
repositories will be added on later versions.

Now we have created a very simple structure instance, but we still need to create FilenameTemplate instances
for Tasks which then will be used by the Version instances to generate a consistent and meaningful path and
filename:

18 Chapter 3. API Tutorial

Stalker Documentation, Release 0.2.24

from stalker import FilenameTemplate

task_template = FilenameTemplate (
name='Task Template for Commercials',
target_entity_type='Task',

path="'S$REPO{{project.repository.id}}/{{project.code}}/{ or p in parent_
—~tasks —-%}{{p.nice_name}}/{ ndfor -%}',
filename="'{{version.nice_name}}_ _v{{" "|format (version.version_number) }}'

and append it to our project structure
commercial_project_structure.templates.append(task_template)

commit to database
DBsession.commit () # no need to add anything, project is already on db

By defining a FilenameTemplate instance we have essentially told Stalker how to store Version instances
created for Task entities in our Repository.

The data entered both to the path and £ilename arguments are Jinja2 directives. The Version class knows
how to render these templates while calculating its path and £ilename attributes.

Also, if you noticed we have used an environment variable “SREPO” along with the id of the first repository in
the project “{ { project.repository.id} }” (attention! project . repository always shows the first repository in
the project), this is a new feature introduced with Stalker version 0.2.13. Stalker creates environment variables
on runtime for each of the repository whenever a repository is created and inserted in to the DB or it will create
environment variables for already existing repositories upon a successful database connection.

Lets create a Version instance for one of our tasks:

from stalker import Version
versl = Version/(

task=comp
we need to update the paths

versl.update_paths ()

check the path and filename

print (versl.path) # 'SREPO33/FC/SH001/comp’
print (versl.filename) # 'SHO0I_comp_Main_v001'
print (versl.full_path) # '"SREPO33/FC/SH001/comp/SHO001_comp_Main_v001l'

now the absolute values, values with repository root

because I'm running this code in a Linux laptop, my results are using the

linux path of the repository

print (versl.absolute_path) # '/mnt/M/commercials/FC/SH001/comp"’

print (versl.absolute_full_path) # '/mnt/M/commercials/FC/SH001/comp/SHO01_comp
—~Main v001'

check the version_ number
print (versl.version_number) # 1

commit to database
DBsession.commit ()

As you see, the Version instance magically knows where to place itself and what to use as the filename. Thanks
to Stalker it is now easy to create version files where you don’t have weird file names (ex: ‘Shotl_comp_Final’,
‘Shot1_comp_Final_revised’, ‘Shotl_comp_Final_revised_Final’, ‘Shotl_comp_Final_revised_Final_real_final’
and the list goes on, we all know those filenames don’t we :)).

With Stalker the filename and path always follows strict rules.

3.8. Part VI - Asset Management 19

http://jinja.pocoo.org/

Stalker Documentation, Release 0.2.24

Also by using the Version.is_published attribute you can define which of the versions are usable and
which are versions that you are still working on:

versl.is_published = False # I still work on this version, this is not a
usable one

Lets create another version for the same task and see what happens:

be sure that you've committed the previous version to the database

to let Stalker now what number to give for the next version

vers2 = Version (task=comp)

vers?2.update_paths () # this call probably will disappear in next version of
Stalker, so Stalker will automatically update the
paths on Version.__init__ ()

print (vers2.version_number) # 2
print (vers2.filename) # 'SHOO0I_comp_Main_v002'

before creating a new version commit this one to db
DBsession.commit ()

now create a new version
vers3 = Version (task=comp)
vers3.update_paths ()

print (vers3.version_number) # 3
print (vers3.filename) # 'SHOO0I_comp_Main_v002'

Isn’t that nice, Stalker increments the version number automatically.

Also you can query all the versions of a specific task by:

using pure Python

vers_from_python = comp.versions # [<FC_SHO00l_comp_Main_v001 (Version)>,
<FC_SH001_comp_Main_v002 (Version)>,
<FC_SHO001_comp_Main _v003 (Version)>]

or using a query
vers_from_query = Version.query.filter_by (task=comp) .all ()

again returns

[<FC_SHO001l_comp_Main _v001 (Version)>,
<FC_SH001_comp_Main_v002 (Version)>,
<FC_SH001_comp_Main_v003 (Version)>]

assert vers_from_python == vers_from_qguery

Note: Stalker stores Version.path and Version.filename attributes in the database, so the values does
not contain any OS specific path. It will only show the OS specific path on Version.absolute_path and on
Version.absolute_full_path attributes by joining the Repository.path with the path values from
database momentarily.

You can also setup your project structure to have default directories:

commercial_project_structure.custom_template = """
Temp

References

References/Movies

References/Images

nwn

When the above template is executed each line will refer to a directory.

20 Chapter 3. API Tutorial

Stalker Documentation, Release 0.2.24

3.9 Part VIl - Collaboration (not completed)

We came a lot from the start, but what is the use of an Production Asset Management System if we can not
communicate with our colleagues.

In Stalker you can communicate with others in the system, by:

* Leaving a Note to anything created in Stalker (except you can not create a Note to another Note and to
aTag).

* Sending a Message directly to them or to a group of users. (Not implemented yet).
* Anyone can create a Ticket foraProject.

* You can create wiki Pages per Project.

3.10 Part VIl - Extending SOM (coming)

This part will be covered soon

3.11 Conclusion

In this tutorial, you have nearly learned a quarter of what Stalker supplies as a Python library.

Stalker is a very flexible and powerful Production Asset Management system. As of writing this tutorial it has
been developed for the last 5 years (4 years with the only developer being yours truly and for another 1 year where
his wife is also attended to the project) and it is currently been used in production of a feature movie.

But it is only a Python library so it doesn’t supply any graphical user interface.

There are other projects, namely Stalker Pyramid and Anima that is using Stalker in their back ends. Stalker
Pyramid is an Pyramid based Web application and Anima is a pipeline library.

You can clone their repositories to see how PyQt4 and PySide Uls are created with Stalker (in Anima) and how it
is used as the database model for a Web application in Stalker Pyramid.

3.9. Part Vil - Collaboration (not completed) 21

https://www.github.com/eoyilmaz/stalker_pyramid
https://github.com/eoyilmaz/anima
https://www.github.com/eoyilmaz/stalker_pyramid
https://www.github.com/eoyilmaz/stalker_pyramid
http://www.pylonsproject.org/
https://github.com/eoyilmaz/anima
https://www.github.com/eoyilmaz/stalker_pyramid

Stalker Documentation, Release 0.2.24

22 Chapter 3. API Tutorial

cHAPTER 4

Design

The design of Stalker is mentioned in the following sections.

4.1 Introduction

Stalker is an Open Source Production Asset Management Library. Although it is designed VFX and Animation
studios in mind, its flexible Project Management muscles will allow it to be used in a wide variety of fields.

An Asset Management Systems’ duty is to hold the data which are created by the users of the system in an
organised manner, and let them quickly reach and find their files. A Production Asset Management Systems’ duty
is, in addition to the asset management systems’, also handle the production steps or tasks and allow the users of
the system to collaborate. If more information about this subject is needed, there are great books about Digital
Asset Management (DAM) Systems.

The usage of an asset management system in an animation/vfx studio is a must for the sake of the studio itself.
Even the benefits of the system becomes silly to be mentioned when compared to the lack of even a simple system
to organise stuff.

Every studio outside establishes and develops their own asset management system. Stalker will try to be the
framework that these proprietary asset management systems will be build over. Thus reducing the work repeated
on every big projects’ start.

4.2 Concepts

There are a couple of design concepts those needs to be clarified before any further explanation of Stalker.

Stalker on itself basically is the Model in an MTYV system (where the Stalker Pyramid is the Template and View).
So it defines the data and the interaction of the data with itself.

Because the idea behind Stalker was to build an open source library that any studio using it can build their own
pipeline on top of it, it is designed to stay simple and solid at the same time. So the UI and other stuff is ripped off
from the original Stalker package and moved to another Pyramid web application called Stalker Pyramid.

23

https://pypi.python.org/pypi/stalker_pyramid
https://pypi.python.org/pypi/stalker_pyramid

Stalker Documentation, Release 0.2.24

4.2.1 Stalker Object Model (SOM)

Stalker has a very robust object model, which is called Stalker Object Model or SOM. The idea behind SOM is
to create a class hierarchy which is both usable right out of the box and also expandable by the studios’ developers.
SOM is actually a little bit more complex than a basic possible model, it is designed in this way just to be able to
create a simple pipeline to be able to build the system over it.

Lets look at how a simple studio works and try to create our asset management concepts around it.

An animation/vfx studios duty is to complete a Project. A project, generally is about to create a Sequence
of Shots which are a series of images those at the end converts to a movie. So a sequence in general contains
Shots. And Shots can use Assets. So basically to complete a project the studio should complete the shots and
assets needed by those shots.

Furthermore all the Projects, Sequences, Shots or Assets are divided in to different Tasks those need to be done
sequentially or in parallel to complete that project.

A Task relates to a work, a work is a quantity of time spent or going to be spend for that specific task. The time
spent on the course of completion of a Task can be recorded with TimeLogs. TimeLogs show the total time spent
by an artist for a certain Task. So it holds information about how much effort has been spent to complete a Task.

During the completion of the Task or at the end of the work a User creates Versions for that particular Task.
Versions are the different incarnations or the progress of the resultant product, and it is connected to files in the
fileserver or in Stalkers term the Repository.

All the names those shown in bold fonts are a class in SOM. and there are a series of other classes to accommodate
the needs of a Studio.

The inheritance diagram of the classes in the SOM is shown below:

4.3 Inheritance Diagram

Stalker is a configurable and expandable and most importantly it is an open source system. All of these features
allows the system to have a flexible structure.

There are two levels of expansion, the first level is the simplest one, by just adding different statuses, different
types or these kind of things in which Stalker’s current design is ready to. This is explained in How To Customize
Stalker.

The second level of expansion is achieved by expanding the SOM. Expanding the SOM includes creating new
classes and database tables, and updating the old ones which are already coming with Stalker. These expansion
schemes are further explained in How To Extend SOM.

4.3.1 Features

1. Developed purely in Python (2.6 and over) using TDD (Test Driven Development) practices
2. SQLAIlchemy for the database back-end and ORM

3. Uses Jinja2 as the template system for the file and folder naming convention, it is possible to use templates
like:

{repository.path }/{ project.code }/Assets/{ asset.type.name }/{ asset.code }/ {as-
set.name}_{asset.type.name}_v{version.version_number}.{version.extension}

4. File and folders and file sequences can be uploaded to the server as assets, and the server decides where to
place the folder or file by using the template system.

5. The event system gives full control for every CRUDL (create/insert, read, update, delete and list) by giving
step like before insert, after insert call-backs.

6. The messaging system allows the users collaborate efficiently.

7. Has an embedded Ticket system.

24 Chapter 4. Design

Stalker Documentation, Release 0.2.24

8. Uses TaskJuggler as the task management backend and supports basic Task attributes.

9. Has a predefined workflow for task statuses called Task Status Workflow which manages the statuses of a
Task during the project completion.

For usage examples see API Tutorial.

4.4 How To Customize Stalker

This part explains the customization of Stalker.

4.5 How To Extend SOM

This part explains how to extend Stalker Object Model or SOM.

4.6 Creating Data

There are some examples here, to create simple data.

4.6.1 Creating a Project

To create a Project, we need:
1. A Repository
2. A Structure object to define the file structure of the Project:

3. FilenameTemplates for Task, Asset, Shot, Sequence types, to define the placement of the Versions created
for them.

4. An ImageFormat to define the output size of the project.

5. A StatusList with enough Statuses that will define the desired Project Statuses. Stalker doesn’t have a
Project Status Workflow, yet! so define yours.

6. If desired we can also add a Type for the Project to distinguish commercials from Feature Film projects.
7. We need to create a user as the lead for the project.

Here is the code:

from stalker import (db, Repository, Structure, FilenameTemplate, Statuslist,
Status, Task, User)

first setup the database connection (assuming that you have a config.py
defined, so we do not need to supply a database address)
db.setup ()

initialize the database just for the first time
db.init () # run this only for the first time, subsequent runs will not
create any errors, but it is unnecessary

re—-use Statuses NEW, WIP and CMPL from default statuses
status_new = Status.query.filter_ by (code="NEW') .first ()
status_wip = Status.query.filter_by (code="WIP').first ()
status_cmpl = Status.query.filter_ by (code='CMPL") .first ()

and create a new one

(continues on next page)

4.4. How To Customize Stalker 25

Stalker Documentation, Release 0.2.24

(continued from previous page)

status_on_air = Status (name='On Air', code='OA"')

status list for project
project_status_list = StatusList (
name='Project Statuses',
target_entity_type='Project',

statuses=|[
status_new,
status_wip,
status_cmpl,
status_on_air

1,

image_format_hd = ImageFormat (
name="HD",
width=1920,
height=1080,

commercial_type = Type (
name="'Commercial',
code="COMM',
target_entity_type='Project'

repo = Repository(
name="'Commercials Repo',
linux_path='/mnt/T/Commercials/",
windows_path='T:/Commercials/",
osx_path="'/Volumes/T/Commercials/"

commercial_structure = Structure (
name='Commercial Project Structure',
code=""

lead = User(
name='Erkan Ozgur Yilmaz',
login='eoyilmaz',
email='eoyilmaz@stalker.com',
password="secret'

lets create the Project

projl = Project (
name='Test Project',
code="TP"',
description="This is the first project",
lead=1lead,
image_format=image_format_hd,
fps=25,
type=commercial_type,
structure=commercial_structure,
repository=repo,
status_list=project_status_list,
status=status_new

just add the project to the database

(continues on next page)

26 Chapter 4. Design

Stalker Documentation, Release 0.2.24

(continued from previous page)

from stalker.db.session import DBSession
DBSession.add (projl)

and commit the data to database
DBSession.commit ()

It may seem too much for just creating a Project, but it is for the first time only. For a second project, we can use
the previous Repository, Structure, Lead, StatusList etc.

4.6.2 Create a Task

Because we have a project now lets create a task for this project:

connect to the database if you have not done yet
db.setup ()

create a new user as the resource for the task
resourcel = User (

name="'Userl"',

login='userl',

email="user@users.com',

password="'secret'

now create the task
taskl = Task(

name="'Taskl"',

description="This is our first Task, and it is about, creating "

"something fancy",

resources=|[resourcel],

schedule_timing=1,

schedule_unit='d",

schedule_model='effort"',

project=projl
)
we do not need to supply a StatusList for the Task, statuses for tasks are
created by default when we called db.init () in previous example

add it to the database
DBSession.add (taskl)

and commit
DBSession.commit ()

Now we have created a simple Task and assigned it to the resourcel. Lets check the status of the Task:

print (taskl.status)
this should print something like <Ready To Start (RTS) (Status)>
stating that our task is ready to start working on.

4.6. Creating Data 27

Stalker Documentation, Release 0.2.24

28 Chapter 4. Design

CHAPTER B

Configuring Stalker

To configure Stalker and make it fit to your Studios need you should use the config.py file as mentioned in
next sections.

5.1 config.py File

Stalker uses the config.py to let one to customize the system config.
The config.py file is searched in a couple of places through the system:
* under “~/.strc/” directory (not yet)
 under “$STALKER_PATH”

The first path is a folder in the users home dir. The second one is a path defined by the STALKER_PATH environ-
ment variable.

Defining the config.py by using the environment variable gives the most customizable and consistent setup
through the studio. You can set STALKER_PATH to a shared folder in your fileserver where all the users can
access.

Because, config.py is aregular Python code which is executed by Stalker, you can do anything you were doing
in a normal Python script. This is very handy (also dangerous!) if you have another source of information which
is reachable by a Python script.

If there is no STALKER_PATH variable in your current environment or it is not showing an existing path or there
isno config.py file the system will use the system defaults.

5.2 Config Variables

Variables which can be set in config.py are as follows:

actions
Actions for authorization system. These are used to create ACLs. Stalker uses CRUDL system. Default
value is:

actions = ['Create', 'Read', 'Update', 'Delete', 'List'] #CRUDL

29

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Stalker Documentation, Release 0.2.24

auto_create_admin

Tells Stalker to create an admin by default. Default value is:

’autoicreateiadmin = True

admin_name
The default admin user name. Default value is:

’admin_name = 'admin'

admin_login
The default admin login. Default value is:

’admin_login = 'admin'

admin_password
The default admin password. Default value is:

’admin_password = 'admin'

admin email
The default email for admin user. Default value is:

’admin_email = 'admin@admin.com'

admin_department_name
The default department name for admin. Default value is:

’admin_department_name = 'admins'

admin_group_name

The default admin permission group name. Default value is:

’admin_group_name = 'admins'

database_engine_settings
A dictionary of config values. The default value is:

database_engine_settings = {
"sglalchemy.url": "sqglite:///:memory:",
"sglalchemy.echo": False,

database_session_settings
This value is not used.

local_storage_path
The local storage path for Stalker.

local_storage_path = os.path.expanduser(‘~/.strc’)

local_session_data_file name

The per user or local session file name. It is used for storing logged in user info. The default value is:

local_session_data_file_name = 'local_ session_data'

server_side_storage_path

Storage for uploaded files. This used by Stalker Pyramid and shows the server side storage path. Will be
moved to Stalker Pyramid in later versions. Not used by Stalker by default. Default value is:

server_side_storage_path = os.path.expanduser ('~/Stalker_Storage')

30

Chapter 5. Configuring Stalker

https://pypi.python.org/pypi/stalker_pyramid

Stalker Documentation, Release 0.2.24

key

The default keyword which is going to be used in password scrambling. Default value is:

’key =

"stalker_default_key"

version_take name
The default take name for Version instances. Default value is:

’version_take_name = "Main"

status_bg_color

Default background color for St atus instances. Default value is:

’status_bg_color =

Oxffffff

status_fg color

Default foreground color for St atus instances. Default value is:

status_fg_color =

0x000000

ticket_label

Default ticket label. Used by Ticket when generating a ticket name. Default value is:

’ticket_label

= "Ticket"

ticket_status_order
Defines the ticket statuses and the order of them. Default value is:

ticket_status_order = [
'new', 'accepted',

'assigned',

'reopened’,

'closed'

ticket_resolutions
Defines the default ticket resolutions. Default value is:

"fixed',

ticket_resolutions = [

'invalid',

'wontfix',

'duplicate’,

'worksforme',

'cantfix'

ticket_workflow

Defines the default ticket workflow. It is a dictionary of actions. Shows the new status per action. Default

value is:

'resolve

'new

}I

by

by

by

ticket_workflow = {

1 . {
L} : {

'new_status':
'action':

'accepted': {

'new_status':
'action':

'assigned': {

'new_status':
'action':

'reopened': {

'new_status':
'action':

'closed',

'set_resolution'

'closed’',

'set_resolution'

'closed',

'set_resolution'

'closed’',

'set_resolution'

(continues on next page)

5.2. Config Variables

31

Stalker Documentation, Release 0.2.24

(continued from previous page)

by

'accept' : {
'new': {
'new_status': 'accepted',
'action': 'set_owner'

by

'accepted': {

'new_status': 'accepted',
'action': 'set_owner'
}V
'assigned': {
'new_status': 'accepted',
'action': 'set_owner'
}V
'reopened’': {
'new_status': 'accepted',
'action': 'set_owner'
}I
}I
'reassign': {
'new': {
'new_status': 'assigned',
'action': 'set_owner'

y

'accepted': {

'new_status': 'assigned',
'action': 'set_owner'
}V
'assigned': {
'new_status': 'assigned',
'action': 'set_owner'
s
'reopened': {
'new_status': 'assigned',
'action': 'set_owner'
}I
}I
'reopen': {
'closed': {
'new_status': 'reopened',
'action': 'del_resolution'

timing_ resolution
Defines the default timing resolution for classes which are mixed with DateRangeMixin. Stalker uses
the TaskJuggler default timing resolution which is 1 hour:

timing_resolution = datetime.timedelta (hours=1)

task_duration
Defines the default task duration. If only a start or end value is entered for a Task then Stalker calculates
the other value by adding or subtracting the default task duration value from it. Default value is 1 hour:

’task_duration = datetime.timedelta (hours=1)

task_priority
Defines the default task priority. This is used by TaskJuggler to prioritize tasks. Should be a number between
0 and 1000. Default value is 500:

32 Chapter 5. Configuring Stalker

Stalker Documentation, Release 0.2.24

task_priority = 500

working hours
Defines the default weekly working hours per week day. Stalker uses the TaskJuggler default value of 9am
to 6pm. The values entered are minutes from midnight, and it is a list of lists of two integers. Each list of
two integers shows a working hour interval. Default value is:

working_hours = {
'mon': [[540, 1080]1], # 9:00 - 18:00
'tue': [[540, 108011, # 9:00 18:00
'wed': [[540, 108011, # 9:00 - 18:00
'"thu': [[540, 1080]1], # 9:00 - 18:00
'fri': [[540, 108011, # 9:00 18:00
'sat': [], # saturday off
'sun': [], # sunday off

}

daily working hours
Defines the default daily working hour. This is strongly related with the working_hours,
weekly_working_hours, weekly_working_days and yearly_working_days settings and
shows a mean value of daily working hour. Default value is 9:

daily_working_hours = 9

weekly working hours
Defines the default weekly working hour. This is strongly related with the working_hours,
daily_working_hours, weekly_working_days and yearly_working_days settings. De-
fault value is 45:

weekly_working_hours = 45

weekly working days
Defines the default weekly working days. This is strongly related with the working_hours,
daily_working_hours, weekly_working_hours and yearly_working_days settings. De-
fault value is 5:

weekly_working_days = 5

yearly working days
Defines the default yearly working days. This is strongly related with the working hours,
daily_working_hours, weekly_working_hours and weekly_working_days settings. De-
fault value is 260.714 which equals weekly_working_days * 52.1428:

’yearly_working_days = 260.714

day_order
Defines the order of the week days. Default value uses European system:

’day_order = ['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun']

datetime_units
Defines the date and time units. The order should match the datetime_unit_names setting. Default
value is:

datetime_units = ['min', 'h', 'd', 'w', 'm', 'y']

datetime_unit_names
Defines the names of date and time units. The order should match the datetime_units setting. Default
value is:

5.2. Config Variables 33

Stalker Documentation, Release 0.2.24

datetime_unit_names = ['minute', 'hour', 'day', 'week', 'month', 'year']

datetime_units_to_timedelta_kwargs
Defines the conversion ratios of each date and time unit. Default value is:

datetime_units_to_timedelta_kwargs = {
'min': {'name': 'minutes', 'multiplier': 1},
'h' : {'name': 'hours' , 'multiplier': 1},
'ad’ : {'name': 'days' , 'multiplier': 1},
'w' : {'name': 'weeks' , 'multiplier': 1},
'm' : {'name': 'days' , 'multiplier': 30},
'y'! : {'name': 'days' , 'multiplier': 365}

}

task_schedule_models
Defines the default schedule models. These are highly related with TaskJuggler, so anything entered here
should exist in TaskJuggler. Default value is:

task_schedule_models = ['effort', 'length', 'duration']

task schedule_constraints
Defines the default schedule constraints. The order also defines a binary number corresponding to each
value (00: none, O1: start, 10:end, 11:both) and used in defining which side of a Task is constrained to a
date. Also used by TaskJuggler to constrain the start or end or both dates of a task to a certain date. Also a
Task with schedule_constraint is set to 2 (both) is considered a duration task even if its schedule_model is
set to effort or length. Default value is:

task_schedule_constraints = ['none', 'start', 'end', 'both']

tjp_working hours_template
Defines a Jinja2 template for converting WorkingHours instances to a TaskJuggler compatible string. By
default Stalker converts a WorkingHours instance to a workinghours statement in TaskJuggler. Default

value is:
tjp_working_hours_template = """{% macro wh(wh, day) -%}
{ f wh[day]|length %} workinghours {{day}} { or part in wh[day] -%}
{ f loop.index != 1%}, { ndif -%}
(e "|format (part[0]//60) }}:{{" "|format (part[0]%60)}} - {{"
" | format (part[1]1//60) }}r:{{" "|format (part[1]1%60) }}
{ ndfor -%}
{ lse %} workinghours {{day}} off
{ ndif -%}
{ ndmacro -%}

{ {wh (workinghours, 'mon') }}
{{wh (workinghours, 'tue')}}
{{wh (workinghours, 'wed') }}
{ {wh (workinghours, 'thu')}}
{{wh (workinghours, 'fri')}}
{{wh (workinghours, 'sat')}}

() H}

{{wh (workinghours, 'sun' mwn

tjp_studio_template
Defines a Jinja2 template for converting a Studi o instance to a TaskJuggler compatible string. By default
Stalker converts a Studio instance to a pro ject statement in TaskJuggler. Default value is:

tjp_studio_template = """project {{ studio.tjp_id }} "{{ studio.name }}" {{_
—studio.start.date() }} - {{ studio.end.date() }} {

timingresolution {{ ' ''|format ((studio.timing_resolution.days = 86400 +_
—studio.timing_resolution.seconds)//60|int) }}min

now {{ studio.now.strftime ('%Y-%m-%d-%H:%M'"') }}

dailyworkinghours {{ studio.daily_working_hours }}

(continues on next page)

34 Chapter 5. Configuring Stalker

Stalker Documentation, Release 0.2.24

(continued from previous page)

weekstartsmonday

{{ studio.working_hours.to_tjp }}
timeformat "$Y-%m-%d"
scenario plan "Plan"
trackingscenario plan

}

wnn

tjp_project_template
Defines a Jinja2 template for converting a Pro ject instance to a TaskJuggler compatible string. By default
Stalker converts a Project instance to a t ask statement in TaskJuggler. Default value is:

tjp_project_template = """task {{project.tjp_id}} "{{project.name}}" {
{% for task in project.root_tasks %}
{{task.to_tijp}}
{% endfor %}

}

wnn

tjp_task template
Defines a Jinja2 template for converting a Task instance to a TaskJuggler compatible string. By default
Stalker converts a Task to a task statement in TaskJuggler. Default value is:

tjp_task_template = """task {{task.tjp_id}} "{{task.name}}" {
{% 1if task.priority != 500 -%$}priority {{task.priority}}{%$- endif %}
{$- if task.depends %}
depends {% for depends in task.depends %}
{¢— 1if loop.index != 1 %}, {% endif %} {{depends.tjp_abs_id}}
{%—- endfor -%}
{%— endif -%}
{%— 1f task.is_container -%}
{$- for child_task in task.children
{{ child_task.to_tjp }}
{%— endfor %}
{%— else %}

o
—

{% if task.resources|length -%}

{% 1f task.schedule_constraint %}
{%$- if task.schedule_constraint == 1 or task.schedule_constraint == -
%%}
start {{ task.start.strftime('$Y-$m-%d-%H:%M') }}
{%$- endif %}
{%- if task.schedule_constraint == 2 or task.schedule_constraint == 3
=%}

end {{ task.end.strftime ('$Y-%Sm-8d-%H:%$M') }}
{%— endif -%}
{% endif %}
{{task.schedule_model}} {{task.schedule_timing}}{{task.schedule_unit}}
allocate {% for resource in task.resources —-%}
{%$-1if loop.index != 1 %}, {% endif %$}{{resource.tjp_id}}{% endfor %}
{%$- endif -%}
{% for time_log in task.time_logs %}
booking {{time_log.resource.tjp_id}} {{time_log.start.strftime ('$Y-%m-3d-
SSH:SM:%S") }} +{{'%i'|format (time_log.duration.days*24 + time_log.duration.
—seconds/3600) }}h { overtime 2 }
{%— endfor -%}
{% endif %}
}

wnn

tjp_department_template
Defines a Jinja2 template for converting a Department instance to a TaskJuggler compatible string. By

5.2. Config Variables 35

Stalker Documentation, Release 0.2.24

default Stalker converts a Department to a resource statement in TaskJuggler. Default value is:

tjp_department_template = '''resource {{department.tjp_id}} "{{department.name}
;}} " {
{ or resource in department.users %}
{{resource.to_tjp}}
{ ndfor %}

}lll

tjp_vacation_template

Defines a Jinja2 template for converting a Vacation instance to a TaskJuggler compatible string. By
default Stalker converts a Vacation instance to a vacat ion statement in TaskJuggler. Default value is:

tjp_vacation_template = '''vacation {{ vacation.start.strftime ('$Y-%m-5d-%H:%M
—"') }}, {{ vacation.end.strftime ('%Y-%m-2%d-%H:%M") }}'"'

tjp_user_template

Defines a Jinja2 template for converting a User instance to a TaskJuggler resource statement. Default
value is:

tjp_user_template = '''resource {{user.tjp_id}} "{{user.name}}"{ f user.
—vacations %} {
{ or vacation in user.vacations -%}
{{vacation.to_tijp}}
{ ndfor -%}
}{ ndif &}''"!'

tjp_main_template

Defines a Jinja2 template for converting all the information coming from Stalker to a TaskJuggler compatible
t jp file. Default value is:

tjp_main_template = """# Generated By Stalker v{{stalker.__version__}}
{{studio.to_tijp}}

resources
resource resources "Resources" {

{ or user in studio.users %}
{{user.to_tijp}}

{ ndfor %}

}

tasks

{ or project in studio.active_projects %}

{{project.to_tijp}}
{ ndfor %}

reports

taskreport breakdown "{{csv_file_full_path}}"{
formats csv
timeformat "%Y-%m-2d-%H:SM"
columns id, start, end

}

nwn

tJj_command

Defines the TaskJuggler command. Stalker uses this configuration value to call TaskJugglers t 73 command.

tj_command = ‘/ust/local/bin/tj3’,

path_template

Defines a default value for path template for FilenameTemplate instances to be used by Version
instances. This value is not used yet. Default value is:

36

Chapter 5. Configuring Stalker

Stalker Documentation, Release 0.2.24

'"{{project.code}}/{ or parent_task in parent_tasks —-%}{
ndfor -%}'

path_template
—{parent_task.nice_name}}/{

filename_template
Defines a default value for filename template for FilenameTemplate instances to be used by Version
instances. This value is not used yet. Default value is:

filename_template
" "|format (version.version_number) }}"'

'{{task.entity_type}}_{{task.id}}_{{version.take_name}}_v{{

—

sequence_format
Defines the default file sequence format to be used with PySeq. This value is not used yet. Default value is:

sequence_format = " p%t %SR"

Fore details about the format see the PySeq documentation.

file size format
Defines the default file size format to be used in UI. Default value is:

—n

file_size_format MB"

date_time_ format
Defines the default datetime format to be used in Ul and string representations of datetime.datetime in-
stances. Default value is:

'3Y.

o

o
=<

date_time_format S$m.

resolution_presets
Defines default resolution presets. This value is not used yet. Default value is:

resolution_presets = {
"PC Video": [640, 480, 1.01],
"NTSC": [720, 486, 0.911],
"NTSC 16:9": [720, 486, 1.21],
"PAL": [720, 576, 1.0671,
"PAL 16:9": [720, 576, 1.406],
"HD 720": [1280, 720, 1.01,
"HD 1080": [1920, 1080, 1.01,
"1K Super 35": [1024, 778, 1.0],
"2K Super 35": [2048, 1556, 1.01]1,
"4K Super 35": [4096, 3112, 1.01,
"A4 Portrait": [2480, 3508, 1.0]1,
"A4 Landscape": [3508, 2480, 1.0],
"A3 Portrait": [3508, 4960, 1.071,
"A3 Landscape": [4960, 3508, 1.0],
"A2 Portrait": [4960, 7016, 1.0]1,
"A2 Landscape": [7016, 4960, 1.07,
"50x70cm Poster Portrait": [5905, 8268, 1.0],
"50x70cm Poster Landscape": [8268, 5905, 1.0],
"70x100cm Poster Portrait": [8268, 11810, 1.07],
"70x100cm Poster Landscape": [11810, 8268, 1.0],
"1k Square": [1024, 1024, 1.0],
"2k Square": [2048, 2048, 1.0],
"3k Square": [3072, 3072, 1.01,
"4k Square": [4096, 4096, 1.0],
}

default_resolution_preset
Defines the default resolution preset fro new Projects. This value is not used yet. Default value is:

5.2. Config Variables 37

http://rsgalloway.github.com/pyseq/
http://rsgalloway.github.com/pyseq/

Stalker Documentation, Release 0.2.24

default_resolution_preset = "HD 1080"

project_structure
Defines the default project structure. This value is not used by Stalker. Default value is:

project_structure = """{ or shot in project.shots %}
Shots/{{shot.code}}
Shots/{{shot.code}}/Plate
Shots/{{shot.code}}/Reference
Shots/{{shot.code}}/Texture
{ ndfor %}
{ or asset in project.assets%}
{ et asset_path = project.full_path + '/Assets/' + asset.type.name + '/'_|
—+ asset.code %}
{{asset_path}}/Texture
{{asset_path}}/Reference
{ ndfor %}

nwn

thumbnail format
Defines the default thumbnail format. This value is not used by Stalker. Default value is:

’thumbnail_format = "Jpg" ‘

thumbnail_quality
Defines the default thumbnail quality. This value is not used by Stalker. Default value is:

’thumbnail_quality = 70 ‘

thumbnail_ size
Defines the defaul thumbnail size. This value is not used by Stalker. Default value is:

’thumbnail_size = [320, 180] ‘

38 Chapter 5. Configuring Stalker

CHAPTER O

Upgrading Database

6.1 Introduction

From time to time, with new releases of Stalker, your Stalker database may need to be upgraded. This is done with
the Alembic library, which is a database migration library for SQLAlIchemy.

6.2 Instructions

The upgrade is easy, just run the following command on the root of the stalker installation directory:

for Windows
.\Scripts\alembic.exe upgrade head

for Linux or 0OSX
./bin/alembic upgrade head

this should output something like

INFO [alembic.runtime.migration]
INFO [alembic.runtime.migration]
INFO [alembic.runtime.migration]
—added ProjectClients

HH HH W W H

that:

Context impl PostgresqlImpl.
Will assume transactional DDL.
Running upgrade 745b210e6907 —-> £2005dlfbadc,

That’s it, your database is now migrated to the latest version.

39

http://alembic.zzzcomputing.com/en/latest/
http://www.sqlalchemy.org

Stalker Documentation, Release 0.2.24

40 Chapter 6. Upgrading Database

CHAPTER /

How To Contribute

Stalker started as an Open Source project with the expectation of contributions. The soul of the open source is to
share the knowledge and contribute.

These are the areas that you can contribute to:
* Documentation
 Testing the code
* Writing the code

* Creating user interface elements (graphics, icons etc.)

7.1 Development Style

Stalker is developed strictly by following TDD practices. So every participant should follow TDD methodology.
Skipping this steps is highly prohibited. Every added code to the trunk should have a corresponding test and the
tests should be written before implementing a single line of code.

DRY is also another methodology that a participant should follow. So nothing should be repeated. If something
needs to be repeated, then it is a good sign that this part needs to be in a special module, class or function.

7.2 Testing

As stated above all the code written should have a corresponding test.

Adding new features should start with design sketches. These sketches could be plain text files or mind maps or
anything that can express the thing in you mind. While writing down these sketches, it should be kept in mind that
these files also could be used to generate the documentation of the system. So writing down the sketches as rest
files inside the docs is something very meaningful.

The design should be followed by the tests. And the test should be followed by the implementation, and the
implementation should be followed by tests again, until you are confident about your code and it is rock solid.
Then the refactoring phase can start, and because you have enough tests that will keep your code doing a certain
thing, you can freely change your code, because you know that you code will do the same thing if it passes all the
tests.

The first tests written should always fail by having:

41

http://en.wikipedia.org/wiki/Test-driven_development
http:http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Stalker Documentation, Release 0.2.24

self.fail("the test is not implemented yet")

failures. This is something good to have. This will inform us that the test is not written yet. After blocking all
the tests and you are confident about the tests are covering all the aspects of your design sketches, you can start
writing the tests.

Another very important note about the tests are the docstrings of the test methods. You should explain what is this
test method testing, and what you expect as a result of the test. It

After finishing implementing the tests you can start adding the code that will pass the tests.
The test framework of Stalker is unitTest and nose to help testing.
These python modules should be installed to test Stalker properly:
* Nose
» Coverage
The coverage of the tests should be kept as close as possible to %100.

There is a helper script in the root of the project, called doTests. This is a shell script for linux, which runs all the
necessary tests and prints the tests results and the coverage table.

Note: From version 0.1.1 the use of Mocker library is discontinued. The tests are done using real objects. It is
done in this way cause the design of the objects were changing too quickly, and it started to be a guess work to see
which of the tests are effected by this changes. So the Mocker is removed and it will not be used in future releases.

7.3 Coding Style

For the general coding style every participant should strictly follow PEP 8 rules, and there are some extra rules as
listed below:

* Class names should start with an upper-case letter, function and method names should start with lower-case
letter:

class MyClass (object):
"""the doc string of the class

mmn

def @ init_ (self):
pass

def my_method(self):
pass

There should be 1 spaces before and after functions and class methods:

class StatusBase (object) :
"""The StatusBase class

mmn

def _ init_ (self, name, abbreviation, thumbnail=None) :
self._name = self._checkName (name)

def _checkName (self, name) :

mn

checks the name attribute

mmwn

if name == "" or not isinstance (name, str):

(continues on next page)

42 Chapter 7. How To Contribute

http://www.python.org/dev/peps/pep-0008/

Stalker Documentation, Release 0.2.24

(continued from previous page)

raise (ValueError ("the name shouldn't be empty and it should \
be a str"))

return name.title ()

And also there should be 1 spaces before and after a class body:

#-—+— coding: utf-8 —x-—

class A(object):
pass

class B(object):
pass

pass

Any lines that may contain a code or comment can not be longer than 79 characters, all the longer lines
should be cancelled with “" character and should continue properly from the line below:

def _checkName (self, name) :
"""checks the name attribute

mnn

if name == "" or not isinstance (name, str):
raise (ValueError ("the name shouldn't be empty and it should be a \
str™))

return name.title ()

This rule is not followed for the first line of the docstrings and in long function or method names (particularly
in tests).

* If anything is going to be checked against being None you should do it in this way:

if a is None:
pass

* Do not add docstrings to __init__ rather use the classes’ own docstring.
* The first line in the docstring should be a brief summary separated from the rest by a blank line.

If you are going to add a new python file (*.py), use the following line in the first line:

’# *— coding: utf-8 —x*

7.4 SCM - Git

The choice of SCM is Git. Every developer should be familiar with it. It is a good start to go the Git Web Site and
do the tutorial if you don’t feel familiar enough with hg.

7.5 Adding Changes

Stalker is hosted in GitHub.
If you want to do changes in Stalker, the basic pipeline is as follows:

* Fork Stalker from GitHub project page.

7.4. SCM - Git 43

https://git-scm.com/
https://github.com/eoyilmaz/stalker
https://github.com/eoyilmaz/stalker

Stalker Documentation, Release 0.2.24

Clone your own Stalker repository to your own computer.
Do your addition, run your tests, and be sure that your part doesn’t have any errors or failures.
Commit your changes.

Before creating a pull request check if your repository is in sync with the upstream GitHub repository (the
repository that you’ve forked Stalker from) by using the tools supplied in your GitHub project page.

In case there are new changes in upstream, merge them with yours.

Do the tests again. If there are problems in your part of the code, solve the errors/failures.
Commit your changes again.

And push them to your own GitHub repository.

And in the original GitHub page create a Pull Request.

44

Chapter 7. How To Contribute

https://github.com/eoyilmaz/stalker

CHAPTER 8

Stalker Development Roadmap

This section describes the direction Stalker is going.

8.1 Roadmap Based on Versions
Below you can find the roadmap based on the version

8.1.1 0.1.0:

* A complete working set of models in SOM which are using SQLAlIchemy.ext.declarative.

8.1.2 0.2.0:

¢ Web interface

e Complete ProdAM capabilities.

8.1.3 0.3.0:

¢ Complete working Event system

45

Stalker Documentation, Release 0.2.24

46 Chapter 8. Stalker Development Roadmap

CHAPTER 9

Stalker Changes

9.1 0.2.24

* New: Repository instances now have a code attribute which is used for generating the environment
variables where in previous versions the 1d attribute has been used which caused difficulties in transferring
the data to a different installation of Stalker. Also to make the system backwards compatible, Stalker
will still set the old id based environment variables. But when asked for an environment variable it will
return the code based one. The code argument as usual has to be initialized on Repository instance
creation. That’s why this version is slightly backwards incompatible and needs the database to be updated
with Alembic (with the command alembic update head).

* Fix: Repository methods is_in_repo and find_repo are now case insensitive for Windows paths.

e Update: Updated Project class documentation and included information about what is going to be
deleted or how the delete operation will be cascaded when a Pro ject instance is deleted.

9.2 0.2.23

* Update: Updated the setup.py to require psycopg2-binary instead of psycopg2. Also updated
the configuration files for Docker and Travis. This changes the requirement of psycopg2 to psycopg2-binary,
which will make it easier to get the installation to complete on e.g. CentOS 7 without requiring pg_config.

9.3 0.2.22

¢ Fix: Fixed TaskJugglerScheduler.schedule () method to correctly decode byte data from sys.
stderr to string for Python 3.x.

* Fix: Fixed a couple of tests for TaskJuggler.

* Update: Updated Classifiers information in setup.py, removed Python versions 2.6, 3.0, 3.1 and 3.2
from supported Python versions.

* Fix: Removed Python 3.3 from TravisCI build which is not supported by pytest apparently.
* Update: Updated TravisCI config and removed Python 2.6 and added Python 3.6.

» Update: Added a test case for an edge usage of FilenameTemplate.

47

Stalker Documentation, Release 0.2.24

9.4

9.5

9.6

Update: Updated .gitignore file to ignore PyTest cache folder.

Update: Updated the License file to correctly reflect the project license of LGPLv3.
Update: Update copyright information.

New: Created make_html .bat for Windows.

New: Added support for Python wheel.

0.2.21

New: Switched from nose + unittest to pytest as the main testing framework (with
pytest-xdist tests complete 4x faster).

New: Added DBSession.save () shortcut method for convenience which does an add or add_all
(depending to the input) followed by a commit at once.

Update: Updated the about page for a more appealing introduction to the library.
New: Stalker now creates default StatusList for Project instances on database initialization.

Update: SQLite3 support is back. In fact it was newer gone. For simplicity of first time users the default
database is again SQLite3. It was dropped for the sake of adding more PostgreSQL oriented features. But
then it is recognized that the system can handle both. Though a two new Variant had to be created for JSON
and Datetime columns.

Update: With the reintroduction of SQLite3, the new JSON type column in WorkingHours class has
been upgraded to support SQLite3. So with SQLite3 the column stores the data as TEXT but seamlessly
convert them to JSON when ORM loads or commits the data.

New: Added ConfigBase as a base class for Config to let it be used in other config classes.

Fix: Fixed testing.create_db () and testing.drop_db () to fallback to subprocess.
check_call method for Python 2.6.

Fix: Fixed stalker.models.auth.User._validate_password() method to work with
Python 2.6.

Update: Updated all of the tests to use pytest style assertions to support Python 2.6 along with 2.7 and
3.0+.

Fix: Fixed stalker.db.check_alembic_version () function to invalidate the connection, so it is
not possible to continue with the current session, preventing users to ignore the raised ValueError when
the alembic_version of the database is not matching the alembic_version of Stalker’s current
version.

0.2.20

New: Added goods attribute to the Client class. To allow special priced Goods to be created for
individual clients.

Fix: The WorkingHours class is now derived from Entity thus it is not stored in a PickleType
column in Studio anymore. (issue: #44)

Update: Updated appveyor.yml to match travis.yml.

0.2.19

Update: Updated the stalker.config.Config.database_engine_settings to point the test
database.

48

Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

9.7

Fix: Fixed abugin stalker.testing.UnitTestDBBase.setUp () where it was not considering
the existence of the STALKER_PATH environment variable while doing the tests.

Update: Removed debug message from db . setup () which was revealing the database password.

Update: Updated the Unit TestDBBase, it now creates its own test database, which allows all the tests
to run in an individual database. Thus, the tests can now be run in multiprocess mode which speeds
things a lot.

Fix: Removed any module level imports of stalker.defaults variable, which can be changed by a
Studio (or by tests) and should always be refreshed.

Update: Removed the module level import of the stalker.db.session.DBSessioninstalker.
db, so it is not possible to use db . DBSession anymore.

Update: The import statements that imports stalker.defaults moved to local scopes to allow runtime
changes to the defaults to be reflected correctly.

Update: Added Python fall back mode to stalker.shot.Shot.
_check_code_availability () which runs when there is no database.

Update: stalker.models.task.TimeLog._validate_task () is now getting the Status in-
stances from the StatusList that is attached to the Task instance instead of doing a database query.

Update: stalker.models.task.TimeLog._validate_resource () is now falling back to a
Python implementation if there is no database connection.

Update: stalker.models.task.Task._total_logged_seconds_getter () is now hun-
dreds of times faster when there is a lot of TimeLog instances attached to the Task.

Update: In stalker.models.task.Task class, methods those were doing a database query to get
the required Status instances are now using the attached StatusList instance to get them.

Fix: A possible auto_flush is prevented in Ticket class.

Update: Version.latest_version property is now able to fall back to a pure Python implementation
when there is no database connection.

Update: The default log level has been increased from DEBUG to INFO.

Update: In an attempt to speed up tests, a lot of tests that doesn’t need an active Database has been updated
to use the regular unittest.TestCase instead of stalker.testing.TestBase and as a result
running all of the tests are now 2x faster.

Fix: TimeLogs are now correctly reflected in UTC in a tj3 file.

Fix: Fixed a lot of tests which were raising Warnings and surprisingly considered as Errors in TravisCI.
Fix: to_t jp methods of SOM classes that is printing a Datetime object are now printing the dates in UTC.
Fix: Fixed stalker.models.auth.Permission to be hashable for Python 3.

Fix: Fixed stalker.models.auth.AuthenticationLog to be sortable for Python 3.

Fix: Fixed stalker.models.version.Version.latest_version property for Python 3.

Fix: Fixed tests of Permission class to check for correct exception messages in Python 3.

Update: Replaced the assertEquals and assertNotEquals calls which are deprecated in Python
3 with assertEqual and assertNotEquals calls respectively.

Fix: Fixed tests for User and Version classes to not to cause the id column is None warnings of
SQLAIchemy to be emitted.

0.2.18

Update: Support for DB backends other than Postgresql has been dropped. This is done to greatly benefit
from a code that is highly optimized only for one DB backend. With This all of the tests should be inherited

9.7. 0.2.18 49

Stalker Documentation, Release 0.2.24

from the stalker.tests.UnitTestDBBase class.

e New: All the DateTime fields in Stalker are now TimeZone aware and Stalker stores the DateTime values
in UTC. Naive datetime values are not supported anymore. You should use a library like pytz to supply
timezone information as shown below:

import datetime
import pytz
from stalker import db, SimpleEntity
new_simple_entity = SimpleEntity(
name='New Simple Entity',
date_created = datetime.datetime.now(tzinfo=pytz.utc)

* Fix: The default values for date_created and date_updated has now been properly set to a partial
function that returns the current time.

* Fix: Previously it was possible to enter two TimeLogs for the same resource in the same datetime range by
committing the data from two different sessions simultaneously. Thus the database was not aware that it
should prevent that. Now with the new PostgreSQL only implementation and the ExcludeConstraint
of PostgreSQL an IntegrityError israised by the database backend when something like that happens.

» Update: All the tests those are checking the system against an Exception is being raised or not are now
checking also the exception message.

e Update: In the TimeLog class, the raised OverBookedExcept ion message has now been made clear
by adding the start and end date values of the clashing TimeLog instance.

» Update: Removed the unnecessary computed_start and computed_end columns from Task class,
which are already defined in the DateRangeMixin which is a super for the Task class.

9.8 0.2.17.6

¢ Fix: Fixed a bug in ProjectMixin where a proper cascade was not defined and the Delete operations
to the Projects table were not cascaded to the mixed-in classes properly.

9.9 0.2.17.5

* Fix: Fixed the image_format attribute implementation in Shot class. Now it will not copy the
value of Project.image_format directly on __init__ but instead will only store the value if the
image_format argumentin __init__ or Shot.image_format attribute is set to something.

9.10 0.2.17.4

» Update: Updated the comment sections of all of the source files to correctly show that Stalker is LGPL v3
(not v2.1).

9.11 0.2.17.3

* New: Added Shot . fps attribute to hold the fps information per shot.

» Update: Added the necessary alembic revision to reflect the changes in the Version_Inputs table.

50 Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

9.12 0.2.17.2

Fix: Fixed Version_Inputs table to correctly take care of DELETE s on the " 'Versions
table. So now it is possible to delete a Version instance without first cleaning the Link instances that is
related to that Version instance.

Update: Changed the id attribute name from info_idto log_idin AuthenticationLog class.

Update: Started moving towards PostgreSQL only implementation. Merged the
DatabaseModelTester class and DatabaseModelsPostgreSQLTester class.

Fix: Fixed an autoflush issue in stalker.models.review.Review.
finalize_review_set ().

9.13 0.2.17.1

Fix: Fixed alembic revision

9.14 0.2.17

New: Added AuthenticationLog class to hold user login/logout info.

New: Added stalker.testing module to simplify testing setup.

9.15 0.2.16.4

Fix: Fixed alembic revision.

9.16 0.2.16.3

New: ProjectUser now also holds a new field called rate. The default value is equal to the
ProjectUser.user.rate. Itis a way to hold the rate of a user on a specific project.

New: Added the Invoice class.

New: Added the Payment class.

New: Added two simple mixins AmountMixin and UnitMixin.
Update: Good class is now mixed in with the new UnitMixin class.

Update: BudgetEntry class is now mixed in with the new AmountMixin and UnitMixin classes.

9.17 0.2.16.2

New: Group permissions can now be seton __init__ () with the permissions argument.

9.18 0.2.16.1

Fix: As usual after a new release that changes database schema, fixed the corresponding Alembic revision
(92257ba439e1l).

9.12.

0.2.17.2 51

Stalker Documentation, Release 0.2.24

9.19 0.2.16

¢ New: Budget instances are now statusable.

» Update: Updated documentation to include database migration instructions with Alembic.

9.20 0.2.15.2

* Fix: Fixed a typo in the error message in User._validate_email_format () method.

* Fix: Fixed a query-invoked auto-flush problem in Task .update_parent_statuses () method.

9.21 0.2.15.1

* Fix: Fixed alembic revision (f2005d1fbadc), it will now drop any existing constraints before re-creating

them. And the downgrade function will not remove the constraints.

9.22 0.2.15

New: db. setup () now checks for alembic_version before setting up a connection to the database
and raises a ValueError if the database alembic version is not matching the current implementation of
Stalker.

Fix: db.init () setsthe created_by and updated_by attributes to admin user if there is one while
creating entity statuses.

New: Created create_sdist.cmd and upload_to_pypi .cmd for Windows.

New: Project to Client relation is now a many-to-many relation, thus it is possible to set multiple
Clients for each project with each client having their own roles in a specific project.

Update: ScheduleMixin.schedule_timing attribute is now Nullable.

Update: ScheduleMixin.schedule_unit attribute is now Nullable.

9.23 0.2.14

Fix: Fixed Task.path to always return a path with forward slashes.
New: Introducing Ent it yGroups that lets one to group a bunch of

‘“SimpleEntity ‘ ‘s together, it can be used in grouping tasks even if they are in different places on the
project task hierarchy or even in different projects.

Update: Task.percent_complete is now correctly calculated for a Duration based task by using
the Task.start and Task.end attribute values.

Fix: Fixed stalker.models.task.update_time_log_task_parents_for_end () eventto
work with SQLAlchemy v1.0.

New: Added an option called __dag_cascade___ to the DAGMixin to control cascades on mixed in
class. The default value is “all, delete”. Change it to “save-update, merge” if you don’t want the children
also be deleted when the parent is deleted.

Fix: Fixed a bug in Version class that occurs when a version instance that is a parent of other version
instances is deleted, the child versions are also deleted (fixed through DAGMixin class).

52

Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

9.24 0.2.13.3

* Fix: Fixed abugin Review.finalize_review_set () for tasks that are sent to review and still have
some extra time were not clamped to their total logged seconds when the review set is all approved.

9.25 0.2.13.2

* New: Removed msrp, cost and unit arguments from BudgetEntry.__init__ () and added a
new good argument to get all of the data from the related Good instance. But the msrp, cost and unit
attributes of BudgetEntry class are still there to store the values that may not correlate with the related
Good in future.

9.26 0.2.13.1

* Fix: FixedabuginReview.finalize_review_set () which causes Task instances to not to get any
status update if the revised task is a second degree dependee to that particular task.

9.27 0.2.13

* New: Project instances can now have multiple repositories. Thus the repository attribute is renamed
to repositories. And the order of the items in the repositories attribute is restored correctly.

* New: stalker.db.init () now automatically creates environment variables for each repository in the
database.

* New: Addedanew after_insert which listens Repository instance ‘‘insert*‘s to automatically add
environment variables for the newly inserted repositories.

* Update: Repository.make_relative () now handles paths with environment variables.
* Fix: Fixed TaskJugglerScheduler to correctly generate task absolute paths for PostgreSQL DB.

* New: Repository.path is now writable and sets the correct path (1inux_path, windows_path,
or osx_path) according to the current system.

e New: Setting either of the Repository.path, Repository.linux_path, Repository.
windows_path, Repository.osx_path attributes will update the related environment variable if
the system and attribute are matching to each other, setting the 1inux_path on Linux or setting the
windows_path on Windows or setting the osx_path on OSX will update the environment variable.

* New: Added Task.good attribute to easily connect tasks to *‘Good**s.
* New: Added new methods to Repository to help managing paths:

— Repository.find_repo () to find a repo from a given path. This is a class method so it can be
directly used with the Repository class.

Repository.to_os_independent_path () to convert the given path to a OS independent
path which uses environment variables. Again this is a class method too so it can be directly used with
the Repository class.

Repository.env_var anew property that returns the related environment variable name of a repo
instance. This is an instance property:

with default settings

repo = Repository(. . .) repo.env_var # should print something like “REPO131” which will be used
in paths as “SREPO131”

9.24. 0.2.13.3 53

Stalker Documentation, Release 0.2.24

* Fix: Fixed User.company_role attribute which is a relationship to the ClienUser to cascade

all, delete-orphan to prevent AssertionErrors when a Client instance is removed from the User.
companies collection.

9.28 0.2.12.1

* Update: Version class is now mixed with the DAGM1ix1in, so all the parent/child relation is coming from

the DAGMixin.

e Update: DAGMixin.walk_hierarchy () is updated to walk the hierarchy in Depth First mode

by default (method=0) instead of Breadth First mode (method=1).

¢ Fix: Fixed alembic_revision on database initialization.

9.29 0.2.12

Fix: Fixed importing of ProjectUser directly from stalker namespace.

Fix: Fixed importing of ClientUser directly from stalker namespace.

New: Added two new columns to the BudgetEnt ry class to allow more detailed info to be hold.
New: Added a new Mixin called DAGMixin to create parent/child relation between mixed in class.

Update: The Task class is now mixed with the DAGMixin, so all the parent/child relation is coming from
the DAGMixin.

New: Added a new class called Good to hold details about the commercial items/services sold in the Studio.

New: Added a new class called PriceList to create price lists from Goods.

9.30 0.2.11

New: User instances now have a new attribute called rate to track their cost as a resource.

New: Added two new classes called Budget and BudgetEntry to record Project budgets in a simple
way.

New: Added a new class called Role to manage user roles in different Departments, Clients and Projects.

New: User and Department relation is updated to include the role of the user in that department in a more
flexible way by using the newly introduced Role class and some association proxy tricks.

New: Also updated the User to Project relation to include the role of the user in that Project by using an
associated Role class.

Update: Department.members attribute is renamed to users (and removed the synonym property).
Update: Removed Project . lead attribute use Role instead.
Update: Removed Department . lead attribute use Role instead.

Update: Because the Project . lead attribute is removed, it is now possible to have tasks with no re-
sponsible.

Update: Client to User relation is updated to use an association proxy which makes it possible to set a Role
for each User for each Client it is assigned to.

Update: Renamed User.company to User.companies as the relation is now able to handle more than one
Client instances for the User company.

54

Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

» Update: Task Status Workflow has been updated to convert the status of a DREV task to HREV instead
of WIP when the dependent tasks has been set to CMPL. Also the timing of the task is expanded by the
value of stalker.defaults.timing_resolution if it doesn’t have any effort left (generally true
for CMPL tasks) to allow the resource to review and decide if he/she needs more time to do any update on
the task and also give a chance of setting the Task status to WIP by creating a time log.

* New: It is now possible to schedule only a desired set of projects by passing a projects argument to the
TaskJugglerScheduler.

* New: Task.request_review() and Review.finalize() will not cap the timing of the task until it is approved
and also Review.finalize() will extend the timing of the task if the total timing of the given revisions are not
fitting in to the left timing.

9.31 0.2.10.5

» Update: TaskJuggler output is now written to debug output once per line.

9.32 0.2.10.4

e New: ‘@’ character is now allowed in Entity nice name.

9.33 0.2.10.3

e New: ‘@’ character is now allowed in Version take names.

9.34 0.2.10.2

¢ Fix: Fixed a bug in stalker.models.schedulers.TaskJugglerScheduler.
_create_tijp_file_content () caused by non-ascii task names.

¢ Fix: Removed the residual RootFactory class reference from documentation.

¢ New: Added to new functions called utc_to_local and local_to_utc for UTC to Local time and
vice versa conversion.

9.35 0.2.10.1

* Fix: Fixed a bug where for a WIP Task with no time logs (apparently something went wrong) and no de-
pendencies using Task.update_status_with_dependent_statuses () will convert the status
to RTS.

9.36 0.2.10

* New: It is now possible to track the Edit information per Shot using the newly introduced source_in,
source_out and record_in along with existent cut_in and cut_out attributes.

9.37 0.2.9.2

* Fix: Fixed MySQL initialization problem in stalker.db.init ().

9.31. 0.2.10.5 55

Stalker Documentation, Release 0.2.24

9.38 0.2.9.1

* New: As usual, after a new release, fixed a bug in stalker.db.create_entity_statuses ()
caused by the behavioral change of the map built-in function in Python 3.

9.39 0.2.9

* New: Added a new class called Daily which will help managing Version outputs (Link instances
including Versions itself) as a group.

* New: Added a new status list for Daily class which contains two statuses called “Open” and “Closed”.

* Update: Setting the Version.take_name to a value other than a string will now raise a TypeErzror.

9.40 0.2.8.4

* Fix: Fixed SimpleEntity._validate_name () method for unicode strings.

9.41 0.2.8.3

* Fix: Fixed str/unicode errors due to the code written for Python3 compatibility.

* Update: Removed Task.is_complete attribute. Use the status “CMPL” instead of this attribute.

9.42 0.2.8.2

* Fix: Fixed stalker.db.create_alembic_table () again to prevent extra row insertion.

9.43 0.2.8.1.1

¢ Fix: Fixed stalker.db.create_alembic_table () function to handle the situation where the ta-
ble is already created.

9.44 0.2.8.1

¢ Fix: Fixed stalker.db.create_alembic_table () function, it is not using the alembic library
anymore to create the alembic_version table, which was the proper way of doing it but it created a lot
of problems when Stalker is installed as a package.

9.45 0.2.8

* Update: Stalker is now Python3 compatible.

¢ New: Added a new class called C1ient which can be used to track down information about the clients
of Projects. Also added Project.client and User.company attributes which are referencing a
Client instance allowing to add clients as normal users.

56 Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

* New: db.init () now creates alembic_version table and stamps the most recent version number to
that table allowing newly initialized databases to be considered in head revision.

¢ Fix: Fixed Version._format_take_name () method. It is now possible to use multiple underscore
characters in Version.take_name attribute.

9.46 0.2.7.6

e Update: Removed TimeLog._expand_task_schedule_timing () method which was automati-
cally adjusting the schedule_timing and schedule_unit of a Task to total duration of the TimeL-
ogs of that particular task, thus increasing the schedule info with the entered time logs.

But it was setting the schedule_timing to 0 in some certain cases and it was unnecessary because the
main purpose of this method was to prevent TaskJuggler to raise any errors related to the inconsistencies
between the schedule values and the duration of TimeLogs and TaskJuggler has never given a real error
about that situation.

9.47 0.2.7.5

* Fix: Fixed Task parent/child relationship, previously setting the parent of a task to None was cascading a
delete operation due to the “all, delete-orphan” setting of the Task parent/child relationship, this is updated
to be “all, delete” and it is now safe to set the parent to None without causing the task to be deleted.

9.48 0.2.7.4

* Fix: Fixed the following columns column type from String to Text:
— Permissions.class_name
— SimpleEntities.description
— Links.full_path
— Structures.custom_template
— FilenameTemplates.path
— FilenameTemplates.filename
— Tickets.summary

— Wiki.title

Wiki.content
and specified a size for the following columns:

— SimpleEntities.html_class -> String(32)

— SimpleEntities.html_style -> String(32)

— FilenameTemplates.target_entity_type -> String(32)
to be compatible with MySQL.

» Update: It is now possible to create TimeLog instances for a Task with PREV status.

9.46. 0.2.7.6 57

Stalker Documentation, Release 0.2.24

9.49 0.2.7.3

* Fix: Fixed Task.update_status_with_dependent_statuses () method for
a Task where there is no dependency but the status is DREV. Now calling Task.
update_status_with_dependent_statuses () will set the status to RTS if there is no
TimeLog for that task and will set the status to WIP if the task has time logs.

9.50 0.2.7.2

* Update: TaskJugglerScheduler is now 466x faster when dumping all the data to TJP file. So with
this new update it is taking only 1.5 seconds to dump ~20k tasks to a valid TJP file where it was around ~10
minutes in previous implementation. The speed enhancements is available only to PostgreSQL dialect for
now.

9.51 0.2.7.1

« Fix: Fixed TimeLog output in one line per task in Task.to_tJp ().

* New: Added TaskJugglerScheduler now accepts a new argument called compute_resources
which when set to True will also consider Task.alternative_resources attribute and will fill Task.
computed_resources attribute for each Task. With TaskJugglerScheduler when the total num-
ber of Task is around 15k it will take around 7 minutes to generate this data, so by default it is set to False.

9.52 0.2.7

¢ New: Added efficiency attribute to User class. See User documentation for more info.

9.53 0.2.6.14

* Fix: Fixed an autoflush problem in Studio.schedule () method.

9.54 0.2.6.13

* New: Added Repository.make_relative () method, which makes the given path to relative to the
repository root. It considers that the path is already in the repository. So for now, be careful about not to
pass a path outside of the repository.

9.55 0.2.6.12

e Update: TaskJugglerScheduler.schedule () method now uses the Studio.start and
Studio.end values for the scheduling range instead of the hardcoded dates.

9.56 0.2.6.11

e Update: Task.create_time_log () method now returns the created TimeLog instance.

58 Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

9.57 0.2.6.10

e Fix: Fixed an autoflush issue in Task.update_status_with_children_statuses()

method.

9.58 0.2.6.9

e Update: Studio.is_scheduling and Studio.is_scheduling_by attributes will not be up-

dated or checked at the beginning of the Studio.schedule () method. It is the duty of the user to
check those attributes before calling Studio.schedule (). This is done in this way because without
being able to do a db commit inside Studio.schedule () method (which is the case with transaction
managers which may be used in web applications like Stalker Pyramid) it is not possible to persist and thus
use those variables. So, to be able to use those attributes meaningfully the user should set them. Those vari-
ables will be set to False and None accordingly by the Studio.schedule () method after the scheduling
is done.

9.59 0.2.6.8

¢ Fix: Fixed a deadlock in TaskJugglerScheduler.schedule () method related with the Popen.

stderr.readlines () blocking the TaskJuggler process without being able to read the output buffer.

9.60 0.2.6.7

Update: TaskJugglerScheduler.schedule () is now using bulk inserts and updates which is way
faster than doing it with pure Python. Use parsing_method (0: SQL, 1: Python) to choose between SQL
or Pure Python implementation. Also updated Studio.schedule () to take in a parsing_method
parameter.

9.61 0.2.6.6

Update: The cut_in, cut_out and cut_duration attribute behaviour and the attribute order
is updated in Shot class. So, if three of the values are given, then the cut_duration attribute
value will be calculated from cut_in and cut_out attribute values. In any case cut_out precedes
cut_duration, and if none of them given cut_in and cut_duration values will default to 1 and
cut_out will be calculated by using cut__in and cut_duration.

9.62 0.2.6.5

New: Entity to Note relation is now Many-to-Many. So one Note can now be assigned more than one Entity.

New: Added alembic revision for Ent ity Notes table creation and data migration from Notes table to
Entity_Notes table. So all notes are preserved.

Fix: Fixed Shot .cut_durat ion attribute initialization on Shot instances restored from database.

Fix: Fixed Studios.is_scheduling_by relationship configuration, which was wrongly referenc-
ing the Studios.last_scheduled_by_idcolumninstead of Studios.is_scheduled_by_id
column.

9.57

0.2.6.10 59

Stalker Documentation, Release 0.2.24

9.63 0.2.6.4

* New: Added a Task.review_set (review_number) method to get the desired set of reviews. It
will return the latest set of reviews if review_number is skipped or it is None.

» Update: Removed Task.approve () it was making things complex than it should be.

9.64 0.2.6.3

¢ Fix: Added Page to class_namesindb.init ().

« Fix: Fixed TimeLog tjp representation to use bot the start and end date values instead of the start
and duration. This is much better because it is independent from the timing resolution settings.

9.65 0.2.6.2

* Fix: Fixed stalker.models.studio.schedule () method, and prevented it to call DBSession.
commit () which causes errors if there is a transaction manager.

* Fix: Fixed stalker.models._parse_csv_£file () method for empty computed resources list.

9.66 0.2.6.1

* New: stalker.models.task.TimeLog instances are now checking if the dependency relation be-
tween the task that receives the time log and the tasks that the task depends to will be violated in terms of
the start and end dates and raises a DependencyViolationError if itis the case.

9.67 0.2.6

* New: Added stalker.models.wiki.Page class, for holding a per Project wiki.

9.68 0.2.5.5

* Fix: Review. task attribute now accepts None but this is mainly done to allow its relation to the Task
instance can be broken when it needs to be deleted without issuing a database commit.

9.69 0.2.5.4

» Update: The following column names are updated:
— Tasks._review_number to Tasks.review_number
— Tasks._schedule_seconds to Tasks.schedule_seconds
— Tasks._total_logged_seconds to Tasks.total_ logged_seconds
— Reviews._review_number to Reviews.review_number
— Shots._cut_into Shots.cut_in

— Shots._cut_out to Shots.cut_out

60 Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

Also updated alembic migration to create columns with those names.

e Update: Updated Alembic revision 433d9caaafab (the one related with stalker 2.5 update) to also

include following updates:

— Create StatusLists for Tasks, Asset, Shot and Sequences and add all the Statuses in the Task Status
Workflow.

— Remove NEW from all of the status lists of Task, Asset, Shot and Sequence.
— Update all the PREV tasks to WIP to let them use the new Review Workflow.
— Update the Tasks.review_number to O for all tasks.

— Create StatusLists and Statuses (NEW, RREV, APP) for Reviews.

— Remove any other status then defined in the Task Status Workflow from Task, Asset, Shot and Se-
quence status list.

9.70 0.2.5.3

9.7

9.7

Fix: Fixed a bug in Task class where trying to remove the dependencies will raise an AttributeError
caused by the Task ._previously_removed_dependent_tasks attribute.

1 0.2.5.2

New: Task instances now have two new properties called path and absolute_path. As in Version
instances, these are the rendered version of the related FilenameTemplate object in the related Project. The
path attribute is Repository root relative and absolute_path is the absolute path including the OS
dependent Repository path.

Update: Updated alembic revision with revision number “433d9caaafab” to also create Statuses introduced
with Stalker v0.2.5.

2 0.2.5.1

Update: Version.___repr__ results with a more readable string.

New: Added a generalized generator called stalker.models.walk_hierarchy () that walks and
yields the entities over the given attribute in DFS or BFS fashion.

New: Added Task.walk_hierarchy () which iterates over the hierarchy of the task. It walks in a
breadth first fashion. Use method=0 to walk in depth first.

New: Added Task.walk_dependencies () which iterates over the dependencies of the task. It walks
in a breadth first fashion. Use method=0 to walk in depth first.

New: Added Version.walk_hierarchy () which iterates over the hierarchy of the version. It walks
in a depth first fashion. Use method=1 to walk in breadth first.

New: Added Version.walk_inputs () which iterates over the inputs of the version. It walks in a
depth first fashion. Use method=1 to walk in breath first.

Update: stalker.models.check_circular_dependency () function is now using stalker.
models.walk_hierarchy () instead of recursion over itself, which makes it more robust in deep hi-
erarchies.

Fix: db.init () now updates the statuses of already created status lists for Task, Asset, Shot and
Sequence classes.

9.70

. 0.2.5.3 61

Stalker Documentation, Release 0.2.24

9.73 0.2.5

Update: Revision class is renamed to Review and introduced a couple of new attributes.

New: Added a new workflow called “Task Review Workflow”. Please see the documentation about the new
workflow.

Update: Task.responsible attribute is now a list which allows multiple responsible to be set for a
Task.

New: Because of the new “Task Review Workflow” task statuses which are normally created in Stalker
Pyramid are now automatically created in Stalker database initialization. The new statuses are Waiting
For Dependency (WFD), Ready To Start (RTS), Work In Progress (WIP), Pending Review (PREYV),
Has Revision (HREYV), On Hold (OH), Stopped (STOP) and Completed (CMPL) are all used in Task,
Asset, Shot and Sequence status lists by default.

New: Because of the new “Task Review Workflow” also a status list for Review class is created by default.
It contains the statuses of New (NEW), Requested Revision (RREYV) and Approved (APP).

Fix: Users.login column is now unique.

Update: Ticket workflow in config is now using the proper status names instead of the lower case names of
the statuses.

New: Added a new exception called StatusError which states the entity status is not suitable for the action
it is applied to.

New: Studio instance now stores the scheduling state to the database to prevent two scheduling process
to override each other. It also stores the last schedule message and the last schedule date and the id of the
user who has done the scheduling.

New: The Task Dependency relation is now using an Association Object instead of just a Secondary
Table. The Task.depends and Task.dependent_of attributes are now association_proxies.

Also added extra parameters like dependency_target, gap_timing, gap_unit and gap_model
to the dependency relation. So all of the dependency relations are now able to hold those extra information.

Updated the task_t jp_template to reflect the details of the dependencies that a task has.

New: ScheduleMixin class now has some default class attributes that will allow customizations in inher-
ited classes. This is mainly done for TaskDependency class and for the gap_timing, gap_unit,
gap_model attributes which are in fact synonyms of schedule_timing, schedule_unit
and schedule_model attributes coming from the ScheduleMixin class. So by using the
_ _default_schedule_attr_name__ Stalker is able to display error messages complaining about
gap_timing attribute instead of schedule_timing etc.

New: Updating a task by calling Task.request_revision () will now set the TaskDependency .
dependency_target to ‘onstart’ for tasks those are depending to the revised task and updated to have
a status of DREV, OH or STOP. Thus, TaskJuggler will be able to continue scheduling these tasks even if
the tasks are now working together.

Update: Updated the TaskJuggler templates to make the tjp output a little bit more readable.

New: ScheduleMixin now creates more localized (to the mixed in class) column and enum type names
in the mixed in classes.

For example, it creates the TaskScheduleModel enum type for Task class and for
TaskDependency it creates TaskDependencyGapModel with the same setup following the
{{class_name}}{{attr_name} }Model template.

Also it creates schedule_model column for Task, and gap_model for TaskDependency class.

Update: Renamed the TaskScheduleUnit enum type name to TimeUnit in ScheduleMixin.

62

Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

9.74 0.2.4

¢ New: Added new class called Revision to hold info about Task revisions.
* Update: Renamed ScheduleMixin to DateRangeMixin.

* New: Added a new mixin called ScheduleMixin (replacing the old one) which adds attributes like
schedule_timing, schedule_unit, schedule_model and schedule_constraint.

* New: Added Task.tickets and Task.open_tickets properties.

* Update: Removed unnecessary arguments (project_lead, tasks, watching, last_login) from
User class.

¢ Update: The timing_resolution attribute is moved from the DateRangeMixin to Studio class.
So instances of classes like Project or Task will not have their own timing resolution anymore.

e New: The Studio instance now overrides the values on stalker.defaults on creation and on load,
and also the db. setup () function lets the first St udio instance that it finds to update the defaults. So it
is now possible to use stalker.defaults all the time without worrying about the Studio settings.

» Update: The Studio.yearly_working_days value is now always an integer.

¢ New: Added a new method ScheduleMixin.least_meaningful_time_unit () to calculate the
most appropriate timing unit and the value of the given seconds which represents an interval of time.

So it will convert 3600 seconds to 1 hours, and 8424000 seconds to 1 years if it represents working time
(as_working_time=True) or 2340 hours if it is representing the calendar time.

¢ New: Added a new method to ScheduleMixin called to_seconds (). The to_seconds () method
converts the given schedule info values (schedule_timing, schedule_unit, schedule_model)
to seconds considering if the given schedule_model is work time based (‘effort’ or ‘length’) or calendar
time based (‘duration’).

* New: Added a new method to ScheduleMixin called schedule_seconds which you may recognise
from Task class. What it does is pretty much the same as in the Task class, it converts the given schedule
info values to seconds.

* Update: In DateRangeMixin, when the start, end or duration arguments given so that the dura-
tion is smaller then the defaults.timing_resolution the defaults.timing_resolution
will be used as the durat ion and the end will be recalculated by anchoring the start value.

e New: Adding a TimeLog to a Task and extending its schedule info values now will always use the least
meaningful timing unit. So expanding a task from 16 hours to 18 hours will result a task with 2 days of
schedule (considering the daily_working_hours = 9).

e Update: Moved the daily_working_hours attribute from Studio class to WorkingHours class
as it was much related to this one then Studio class. Left a property with the same name in the Studio
class, so it will still function as it was before but there will be no column in the database for that attribute
anymore.

9.75 0.2.3.5

* Fix: Fixed a bug in stalker.models.auth.LocalSession where stalker was complaining about
“copy_reg” module, it seems that it is related to this bug.

9.76 0.2.3.4

» Update: Fixed a little bug in Link.extension property setter.

* New: Moved the stalker.models.env.EnvironmentBase class to “Anima Tools” python module.

9.74. 0.24 63

http://www.archivum.info/python-bugs-list@python.org/2007-04/msg00222.html

Stalker Documentation, Release 0.2.24

* Fix: Fixed a bug in stalker.models.task.Task._responsible_getter() where it was always returning the great-
est parents responsible as the responsible for the child task when the responsible is set to None for the
child.

* New: Added stalker.models.version.Version.naming_parents which returns a list of
parents starting from the closest parent Asset, Shot or Sequence.

* New: stalker.models.version.Version.nice_name now generates a name starting from the
closest Asset, Shot or Sequence parent.

9.77 0.2.3.3

e New: Ticket action methods (resolve, accept, reassign, reopen) now return the created
TicketLog instance.

9.78 0.2.3.2

Update: Added tests for negative or zero fps value in Project class.

* Fix: Minor fix to schedule_timing argument in Task class, where IDEs where assuming that the value
passed to the schedule_timing should be integer where as it accepts floats also.

* Update: Removed bg_color and £g_color attributes (and columns) from Status class. Use SimpleEn-
tity.html_class and SimpleEntity.html_style attributes instead.

New: Added Project.open_tickets property.

9.79 0.2.3.1

¢ Fix: Fixed an inconvenience in SimpleEntity.__init__ () when a date_created argument with a value is later
than datetime.datetime.now() is supplied and the date_updated argument is skipped or given as None, then
the date_updated attribute value was generated from datetime.datetime.now() this was causing an unneces-
sary ValueError. This is fixed by directly copying the date_created value to date_updated value when it is
skipped or None.

9.80 0.2.3

e New: SimpleEntity now have two new attributes called html_style and html_class which can be
used in storing cosmetic html values.

9.81 0.2.2.3

» Update: Note.content attribute is now a synonym of the Note.description attribute.

9.82 0.2.2.2

* Update: Studio.schedule() now returns information about how much did it take to schedule the tasks.

» Update: Studio.to_tjp() now returns information about how much did it take to complete the conversion.

64 Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

9.83 0.2.2.1

* Fix: Task.percent_complete() now calculates the percent complete correctly.

9.84 0.2.2

» Update: Added cascade attributes to all necessary relations for all the classes.

» Update: The Version class is not mixed with the StatusMixin anymore. So the versions are not going to be
statusable anymore. Also created alembic revision (a6598cde6b) for that update.

9.85 0.2.1.2

» Update: TaskJugglerScheduler and the Studio classes are now returning the stderr message out of their
schedule () methods.

9.86 0.2.1.1

* Fix: Disabled some deep debug messages on TaskJugglerScheduler._parse_csv_file().

e Fix: Fixed a flush issue related to the Task.parent attribute which is lazily loaded in
Task._schedule_seconds_setter().

9.87 0.2.1

¢ Fix: As usual distutil thinks 0.2 .0 is a lower version number than 0.2.0.rc5 (I should have read the
documentation again and used 0.2.0.c5 instead of 0.2 . 0. rc5) so this is a dummy update to just to fix
the version number.

9.88 0.2.0

» Update: Vacation tjp template now includes the time values of the start and end dates of the Vacation
instance.

9.89 0.2.0.rc5

» Update: For a container task, Task.total_logged_seconds and Task.schedule_seconds
attributes are now using the info of the child tasks. Also these attributes are cached to database, so instead
of querying the child tasks all the time, the calculated data is cached and whenever a TimeLog is created
or updated for a child task (which changes the total_logged_seconds for the child task) or the
schedule_timing or schedule_unit attributes are updated, the cached values are updated on the
parents. Allowing Stalker to display percent_complete info of a container task without loading any of its
children.

e New: Added Task.percent_complete attribute, which calculates the percent of completeness of the
task based on the Task.total_logged_seconds and Task.schedule_seconds attributes.

e Fix: Added TimeLog.__eqg () operator to more robustly check if the time logs are overlapping.

9.83. 0.2.2.1 65

Stalker Documentation, Release 0.2.24

New: Added Project.percent_complete, Percent.total_logged_seconds and
Project.schedule_seconds attributes.

Update: ScheduleMixin._validate_dates () does not set the date values anymore, it just return
the calculated and validated start, end and duration values.

Update: Vacation now can be created without a User instance, effectively making the Vacation a
Studio wide vacation, which applies to all users.

Update: Vacation.__strictly_typed__ isupdatedto False, so there is no need to create a Type
instance to be able to create a Vacation.

New: Studio.vacations property now returns the Vacation instances which has no user.

Update: Task.start and Task.end values are no more read from children Tasks for a container task
over and over again but calculated whenever the start and end values of a child task are changed or a new
child is appended or removed.

Update: SimpleEntity.description validation routine doesn’t convert the input to string anymore,
but checks the given description value against being a string or unicode instance.

New: Added Ticket .summary field.

Fix: Fixed Link.extension, it is now accepting unicode.

9.90 0.2.0.rc4

New: Added a new attribute to Version class called latest_version which holds the latest version
in the version queue.

New: To optimize the database connection times, stalker.db.setup () will not try to initialize the
database every time it is called anymore. This leads a ~4x speed up in database connection setup. To
initialize a newly created database please use:

for a newly created database

from stalker import db

db.setup() # connects to database

db.init () # fills some default values to be used with Stalker

for any subsequent access just use (don't need to call db.init())
db.setup ()

Update: Removedall __init_on_load () methods from all of the classes. It was causing SQLAIchemy
to eagerly load relations, thus slowing down queries in certain cases (especially in Task.parent ->
Task.children relation).

Fix: Fixed Vacation class tj3 format.

Fix: Studio.now attribute was not properly working when the Studio instance has been restored from
database.

9.91 0.2.0.rc3

New: Added a new attribute to Task class called responsible.
Update: Removed Sequence.lead_iduse Task.reponsible instead.
Update: Updated documentation to include documentation about Configuring Stalker with config.py.

Update: The duration argument in Task class is removed. It is somehow against the idea of having
schedule_model and schedule_timing arguments (schedule_model="'duration"' is kind
of the same).

66

Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

9.9

9.9

9.9

9.9

9.9

Update: Updated Task class documentation.

2 0.2.0.rc2

New: Added Version.created_with attribute to track the environment or host program name that a
particular Version instance is created with.

3 0.2.0.rct

Update: Moved the Pyramid part of the system to another package called stalker_pyramid.

Fix: Fixed setup.py where importing stalker to getthe __version__ variable causing problems.

4 0.2.0.b9

New: Added Version.latest_published_version and Version.
is_latest_published_version().

Fix: Fixed Version.__eqg__ (), now Stalker correctly distinguishes different Version instances.

New: Added Repository.to_linux_path(), Repository.to_windows_path (),
Repository.to_osx_path () and Repository.to_native_path() to the Repository
class.

New: Added Repository.is_in_repo (path) which checks if the given path is in this repo.

5 0.2.0.b8

Update: Renamed Version.version_of attribute to Version.task.
Fix: Fixed Version.version_number where it was not possible to have a version number bigger than 2.
Fix: In db.setup() Ticket statuses are only created if there aren’t any.

Fix: Added Vacation class to the registered class list in stalker.db.

6 0.2.0.b7

Update: Task.schedule_constraint is now reflected to the tjp file correctly.

Fix: check_circular_dependency() now checks if the entity and the other_entity are the same.
Fix: Task.to_tjp() now correctly add the dependent tasks of a container task.

Fix: Task.__eq__() now correctly considers the parent, depends, resources, start and end dates.
Update: Task.priority is now reflected in tjp file if it is different than the default value (500).
New:: Added a new class called Vacation to hold user vacations.

Update: Removed dependencies to pyramid.security.Allow and pyramid.security.Deny
in couple of packages.

Update: Changed the way the stalker.defaults is created.

Fix: EnvironmentBase.get_version_from_full_path(), EnvironmentBase.get_versions_from_path(),
EnvironmentBase.trim_repo_path(), EnvironmentBase.find_repo methods are now working properly.

9.92

. 0.2.0.rc2 67

Stalker Documentation, Release 0.2.24

» Update: Added Version.absolute_full_path property which renders the absolute full path which also in-
cludes the repository path.

* Update: Added Version.absolute_path property which renders the absolute path which also includes the
repository path.

9.97 0.2.0.b6

* Fix: Fixed LocalSession._write_data(), previously it was not creating the local session folder.
¢ New: Added a new method called LocalSession.delete() to remove the local session file.
» Update: Link.full_path can now be set to an empty string. This is updated in this way for Version class.

e Update: Updated the formatting of SimpleEntity.nice_name, it is now possible to have uppercase letters
and camel case format will be preserved.

* Update: Version.take_name formatting is enhanced.

e New: Task class is now mixed in with ReferenceMixin making it unnecessary to have Asset, Shot and
Sequence classes all mixed in individually. Thus removed the ReferenceMixin from Asset, Shot and
Sequence classes.

* Update: Added Task.schedule_model validation and its tests.

¢ New: Added ScheduleMixin.total_seconds and ScheduleMixin.computed_total_seconds.

9.98 0.2.0.b5

¢ New: Version class now has two new attributes called parent and children which will be used in
tracking of the history of Version instances and track which Versions are derived from which Version.

* New: Versions instances are now derived from Link class and not Entity.
» Update: Added new revisions to alembic to reflect the change in Versions table.

« Update: Links.path is renamed to Links.full_path and added three new attributes called path, filename
and extension.

» Update: Added new revisions to alembic to reflect the change in Links table.

¢ New: Added a new class called LocalSession to store session data in users local filesystem. It is going to
be replaced with some other system like Beaker.

* Fix: Database part of Stalker can now be imported without depending to Pyramid.

* Fix: Fixed documentation errors that Sphinx complained about.

9.99 0.2.0.b4

* No changes in SOM.

9.100 0.2.0.b3

» Update: FilenameTemplate’s are not strictly typed anymore.

» Update: Removed the FilenameTemplate type initialization, FilenameTemplates do not depend on Types
anymore.

68 Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

» Update: Added backthe plural_class_name (previously plural_name) property to the ORMClass
class, so all the classes in SOM now have this new property.

» Update: Added accepts_references attribute to the EntityType class.

e New: The Link class has a new attribute called original_filename to store the original file names of
link files.

* New: Added alembic to the project requirements.

e New: Added alembic migrations which adds the accepts_references column to EntityTypes
table and original_name to the Links table.

9.101 0.2.0.b2

« Stalker is now compatible with Python 2.6.
* Task:

— Update: Tasks now have a new attribute called watchers which holds a list of User instances
watching the particular Task.

— Update: Users now have a new attribute called wat ching which is a list of Task instances that this
user is watching.

* TimeLog:

— Update: TimeLog instances will expand Task.schedule_timing value automatically if the total amount
of logged time is more than the schedule_timing value.

— Update: TimeLogs are now considered while scheduling the task.

— Fix: TimeLogs raises OverBookedError when appending the same TimeLog instance to the same
resource.

e Auth:

— Fix: The default ACLs for determining the permissions are now working properly.

9.102 0.2.0.b1

* WorkingHours.is_working_hour() is working now.
» WorkingHours class is moved from stalker.models.project to stalker.models.studio module.

* daily_working_hours attribute is moved from stalker.models.project.Project to
stalker.models.studio.Studio class.

* Repository path variables now ends with a forward slash even if it is not given.

» Updated Project classes validation messages to correlate with Stalker standard.

* Implementation of the Studio class is finished. The scheduling works like a charm.

* It is now possible to use any characters in SimpleEntity.name and the derived classes.

* Booking class is renamed to TimeLog.

9.103 0.2.0.a10

* Added new attribute to WorkingHours class called weekly_working_hours, which calculates the
weekly working hours based on the working hours defined in the instance.

9.101. 0.2.0.b2 69

Stalker Documentation, Release 0.2.24

* Task class now has a new attribute called schedule_timing which is replacing the effort, length
and duration attributes. Together with the schedule_model attribute it will be used in scheduling
the Task.

¢ Updated the config system to the one used in oyProjectManager (based on Sphinx config system). Now to
reach the defaults:

instead of doing the following
from stalker.conf import defaults # not valid anymore

use this
from stalker import defaults

If the above idiom is used, the old de faults module behaviour is retained, so no code change is required
other than the new lower case config variable names.

9.104 0.2.0.a9

* A new property called t o_t jp added to the SimpleEntity class which needs to be implemented in the child
and is going to be used in TaskJuggler integration.

* A new attribute called is_scheduled added to Task class and it is going to be used in Gantt charts.
Where it will lock the class and will not try to snap it to anywhere if it is scheduled.

* Changed the resolution attribute name to timing_resolution to comply with TaskJuggler.

¢ ScheduleMixin:

Updated ScheduleMixin class documentation.

There are two new read-only attributes called computed_start and computed_end. These
attributes will be used in storing of the values calculated by TaskJuggler, and will be used in Gantt
Charts if available.

— Added computed_duration.
* Task:
— Arranged the TaskJuggler workflow.
— The task will use the effort > length > duration attributes in fo_tjp property.

* Changed the license of Stalker from BSD-2 to LGPL 2.1. Any version previous to 0.2.0.a9 will be still
BSD-2 and any version from and including 0.2.0.a9 will be distributed under LGPL 2.1 license.

* Added new types of classes called Schedulers which are going to be used in scheduling the tasks.

* Added TaskJugglerScheduler, it uses the given project and schedules its tasks.

9.105 0.2.0.a8

» TagSelect now can be filled by setting its value attribute (Ex: TagSelect.set(‘value’, data))
e Added a new method called is_root to Task class. It is true for tasks where there are no parents.
* Added a new attribute called users to the Department class which is a synonym for the members attribute.
e Task:
— Task class is now preventing one of the dependents to be set as the parent of a task.
— Task class is now preventing one of the parents to be set as the one of the dependents of a task.

— Fixed aut of1ush bugs in Task class.

70 Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

* Fixed admin users department initialization.

e Added thumbnail attribute to the SimpleEntity class which is a reference to a Link instance, showing the
path of the thumbnail.

¢ Fixed Circular Dependency bug in Task class, where a parent of a newly created task is depending to another
task which is set as the dependee for this newly created task (T1 -> T3 -> T2 -> T1 (parent relation) -> T3
-> T2 etc.).

9.106 0.2.0.a7

* Changed these default setting value names to corresponding new names:

DEFAULT_TASK_DURATION -> TASK_DURATION
DEFAULT_TASK_PRIORITY -> TASK_PRIORITY
DEFAULT_VERSION_TAKE_NAME -> VERSION_TAKE_NAME
DEFAULT_TICKET_LABEL->TICKET_LABEL
DEFAULT_ACTIONS ->ACTIONS
DEFAULT_BG_COLOR -> BG_COLOR

DEFAULT_FG_COLOR -> FG_COLOR

¢ stalker.conf.defaults:

Added default settings for project working hours (WORKING_HOURS, DAY_ORDER,
DAILY_WORKING_HOURS)

Added a new variable for setting the task time resolution called TIME_RESOLUTION.

* stalker.models.project.Project:

Removed Project.project_tasks attribute, use Project.tasks directly to get all the Tasks in that project.
For root task you can do a quick query:

Task.query.filter (Task.project==proj_id) .filter (Task.parent==None) .all ()

This will also return the Assets, Sequences and Shots in that project, which are also Tasks.

Users are now assigned to Projects by appending them to the Project.users list. This is done in this
way to allow a reduced list of resources to be shown in the Task creation dialogs.

Added a new helper class for Project working hour management, called WorkingHours.

Added a new attribute to Project «class called working_hours which holds
stalker.models.project. WorkingHours instances to manage the Project working hours. It will
directly be passed to TaskJuggler.

¢ stalker.models.task.Task:

Removed the Task.task_of attribute, use Task.parent to get the owner of this Task.

Task now has two new attributes called Task.parent and Task.children which allow more complex
Task-to-Task relation.

Secondary table name for holding Task to Task dependency relation is renamed from Task_Tasks
to Task_Dependencies.

check_circular_dependency function is now accepting a third argument which is the name of the at-
tribute to be investigated for circular relationship. It is done in that way to be able to use the same
function in searching for circular relations both in parent/child and depender/dependee relations.

¢ ScheduleMixin:

9.106. 0.2.0.a7 71

Stalker Documentation, Release 0.2.24

— Added a new attribute to ScheduleMixin for time resolution adjustment. Default value is 1 hour
and can be set with stalker.conf.defaults. TIME_RESOLUTION. Any finer time than the resolution is
rounded to the closest multiply of the resolution. It is possible to set it from microseconds to years.
Although 1 hour is a very reasonable resolution which is also the default resolution for TaskJuggler.

— ScheduleMixin now uses datetime.datetime for the start and end attributes.
— Renamed the start_date attribute to start.
— Renamed the end_date attribute to end

¢ Removed the TaskableEntity.

* Asset, Sequence and Shot classes are now derived from Task class allowing more complex Task relation
combined with the new parent/child relation of Tasks. Use Asset.children or Asset.tasks to reach the child
tasks of that asset (same with Sequence and Shot classes).

¢ stalker.models.shot.Shot:

— Removed the sequence and introduced sequences attribute in Shot class. Now one shot can be in more
than one Sequence. Allowing more complex Shot/Sequence relations..

— Shots can now be created without a Sequence instance. The sequence attribute is just used to group
the Shots.

— Shots now have a new attribute called scenes, holding Scene instances. It is created to group same
shots occurring in the same scenes.

* In tests all the Warnings are now properly handled as Warnings.
* stalker.models.ticket.Ticket:

— Ticket instances are now tied to Projects and it is now possible to create Tickets without supplying a
Version. They are free now.

— It is now possible to link any SimpleEntity to a Ticket.

— The Ticket Workflow is now fully customizable. Use stalker.conf.defaults. TICKET_WORKFLOW
dictionary to define the workflow and stalker.conf.defaults. TICKET_STATUS_ORDER for the order
of the ticket statuses.

* Added a new class called Scene to manage Shots with another property.
* Removed the output_path attribute in FilenameTemplate class.

* Grouped the templates for each entity under a directory with the entity name.

9.107 0.2.0.a6

 Users now can have more than one Department.

e User instances now have two new properties for getting the user tickets (User.tickets) and the open tickets
(User.open_tickets).

* New shortcut Task.project returns the Task.task_of.project value.
» Shot and Asset creation dialogs now automatically updated with the given Project instance info.

» User overview page is now reflection the new design.

9.108 0.2.0.a5

e The code attribute of the SimpleEntity is now introduced as a separate mixin. To let it be used by the
classes it is really needed.

72 Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

* The query method is now converted to a property so it is now possible to use it like a property as in the
SQLAIlchemy.orm.Session as shown below:

from stalker import Project
Project.query.all () # instead of Project.query().all()

¢ ScheduleMixin.due_date is renamed to ScheduleMixin.end_date.

e Added a new class attribute to SimpleEntity called __auto_name___ which controls the naming of the
instances and instances derived from SimpleEntity. If __auto_name___is set to True the name attribute
of the instance will be automatically generated and it will have the following format:

{{ClassName}}_{{UUID4}}

Here are a couple of naming examples:

Ticket_74bb46b0-29de-4f3e-bde6-8bcfbaedl3s2d
Version_2fab574%9e-8cdb-4887-aef2-6d8cecbadfaa

* Fixed an autoflush issue with SQLAlchemy in StatusList class. Now the status column is again not nullable
in StatusMixin.

9.109 0.2.0.a4

* Added a new class called EntityType to hold all the available class names and capabilities.

* Version class now has a new attribute called inputs to hold the inputs of the current Version instance. It
is a list of Link instances.

* FilenameTemplate classes path and £ilename attributes are no more converted to string, so given a non
string value will raise TypeError.

* Structure.custom_template now only accepts strings and None, setting it to anything else will raise a Type-
Error.

* Two Type’s for FilenameTemplate’s are created by default when initializing the database, first is called
“Version” and it is used to define FilenameTemplates which are used for placing Version source files. The
second one is called “Reference” and it is used when injecting references to a given class. Along with the
FilenameTemplate.target_entity_type this will allow one to create two different FilenameTemplates for one
class:

first get the Types

vers_type = Type.query () \
.filter_by (target_entity_type="FilenameTemplate")\
.filter_ by (type="Version™")\
.first ()

ref_type = Type.query ()\
.filter by (target_entity_type="FilenameTemplate")\
.filter_ by (type="Reference")\
.first ()

lets create a FilenameTemplate for placing Asset Version files.
f_ver = FilenameTemplate (
target_entity_type="Asset",
type=vers_type,
path="Assets/{{asset.type.code}}/{{asset.code}}/{{task.type.code}}",
filename="{{asset.code}}_{{version.take_name}}_{{task.type.code}}_v{{'
—'|version.version_number}}{{link.extension}}"
output_path="{{version.path}}/Outputs/{{version.take_name}}"

(continues on next page)

9.109. 0.2.0.a4 73

Stalker Documentation, Release 0.2.24

(continued from previous page)

and now define a FilenameTemplate for placing Asset Reference files.
no need to have an output_path here...
f_ref = FilenameTemplate (
target_entity_type="Asset",
type=ref_type,
path="Assets/{{asset.type.code}}/{{asset.code}}/References",
filename="{{link.type.code}}/{{link.id}}{{link.extension}}"

stalker.db.register() now accepts only real classes instead of class names. This way it can store more infor-
mation about classes.

Status.bg_color and Status.fg_color attributes are now simple integers. And the Color class is removed.

StatusMixin.status is now a ForeignKey to a the Statuses table, thus it is a real Status instance instead of an
integer showing the index of the Status in the related StatusList. This way the Status of the object will not
change if the content of the StatusList is changed.

Added new attribute Project.project_tasks which holds all the direct or indirect Tasks created for that project.
User.login_name is renamed to User.login.

Removed the first_name, last_name and initials attributes from User class. Now the name and
code attributes are going to be used, thus the name attribute is no more the equivalent of 1ogin and the
code attribute is doing what was initials doing previously.

9.110 0.2.0.a3

 Status class now has two new attributes bg_color and fg_color to hold the UI colors of the Status

instance. The colors are Color instances.

9.111 0.2.0.a2

SimpleEntity now has an attribute called generic_data which can hold any kind of SOM object inside
and it is a list.

Changed the formatting rules for the name in SimpleEntity class, now it can start with a number, and it is
not allowed to have multiple whitespace characters following each other.

The source attribute in Version is renamed to source_file.
The version attribute in Version is renamed to version_number.
The t ake attribute in Version is renamed to take_name.

The version_number in Version is now generated automatically if it is skipped or given as None or it
is too low where there is already a version number for the same Version series (means attached to the same
Task and has the same take_name.

Moved the User class to stalker.models.auth module.

Removed the stalker.ext.auth module because it is not necessary anymore. Thus the User now
handles all the password conversions by itself.

PermissionGroup is renamed back to Group again to match with the general naming of the authoriza-
tion concept.

Created two new classes for the Authorization system, first one is called Permission and the second one is
a Mixin which is called ACLMixin which adds ACLs to the mixed in class. For now, only the User and
Group classes are mixed with this mixin by default.

74

Chapter 9. Stalker Changes

Stalker Documentation, Release 0.2.24

* The declarative Base class of SQLAlchemy is now created by binding it to a ORMClass (a random name)
which lets all the derived class to have a method called query which will bypass the need of calling
DBSession.query (class_) butinstead justcall class_.query ():

from stalker.models.auth import User
user_1 = User.query () .filter_by(name="a user name') .first ()

9.112 0.2.0.a1

* Changed the db . setup arguments. It is now accepting a dictionary instead of just a string to comply with
the SQLAlchemy scaffold and this dictionary should contain keys for the SQLAlchemy engine setup. There
is another utility that comes with Pyramid to setup the database under the scripts folder, it is also working
without any problem with stalker.db.

* The session variable is renamed to DBSession and is now a scopped session, so there is no need to use
DBSession.commit it will be handled by the system it self.

* Even though the DBSession is using the Zope Transaction Manager extension normally, in the database
tests no extension is used because the transaction manager was swallowing all errors and it was a little weird
to try to catch this errors out of the with block.

» Refactored the code, all the models are now in separate python files, but can be directly imported from the
main stalker module as shown:

from stalker import User, Department, Task

By using this kind of organization, both development and usage will be eased out.
* task_of now only accepts TaskableEntity instances.
» Updated the examples. It is now showing how to extend SOM correctly.
» Updated the references to the SOM classes in docstrings and rst files.

* Removed the Review class. And introduced the much handier Ticket class. Now reviewing a data is the
process of creating Ticket’s to that data.

» The database is now initialized with a StatusList and a couple of Statuses appropriate for Ticket instances.

* The database is now initialized with two Type instances (‘Enhancement’ and ‘Defect’) suitable for Ticket
instances.

e StatusMixin now stores the status attribute as an Integer showing the index of the Status in the
status_list attribute but when asked for the value of StatusMixin.status attribute it will re-
turn a proper Status instance and the attribute can be set with an integer or with a proper Status instance.

9.112. 0.2.0.al 75

Stalker Documentation, Release 0.2.24

76 Chapter 9. Stalker Changes

Index

A

actions

configuration value, 29
admin_department_name

configuration value, 30
admin_email

configuration value, 30
admin_group_name

configuration value, 30
admin_login

configuration value, 30
admin_name

configuration value, 30
admin_password

configuration value, 30
auto_create_admin

configuration value, 29

C

configuration value
actions, 29

admin_department_name, 30

admin_email, 30
admin_group_name, 30
admin_login, 30
admin_name, 30
admin_password, 30
auto_create_admin, 29
daily_working_hours, 33

database_engine_settings, 30
database_session_settings, 30

date_time_ format, 37
datetime_unit_names, 33
datetime_units, 33

datetime_units_to_timedelta_kwargs,

34
day_order, 33

default_resolution_preset, 37

file_size_format, 37
filename_template, 37
key, 30

local_session_data_file_name, 30

local_storage_path, 30

path_template, 36
project_structure, 38
resolution_presets, 37
sequence_format, 37

server_side_storage_path, 30

status_bg_color, 31
status_fg_color, 31
task_duration, 32
task_priority, 32

task_schedule_ constraints, 34
task_schedule_models, 34

thumbnail_ format, 38
thumbnail_quality, 38
thumbnail_size, 38
ticket_label, 31
ticket_resolutions, 31
ticket_status_order, 31
ticket_workflow, 31
timing_resolution, 32
t j_command, 36

tJjp_department_template, 35

tJjp_main_template, 36
tjp_project_template, 35
tjp_studio_template, 34
tjp_task_template, 35
tjp_user_template, 36

tJjp_vacation_template, 36

tjp_working_hours_template, 34

version_take_name, 31
weekly_working_days, 33
weekly_working_hours, 33
working_hours, 33
yearly_working_days, 33

daily_working_hours
configuration value, 33
database_engine_settings
configuration value, 30
database_session_settings
configuration value, 30
date_time_format
configuration value, 37
datetime_unit_names

77

Stalker Documentation, Release 0.2.24

configuration value, 33
datetime_units

configuration value, 33
datetime_units_to_timedelta_kwargs

configuration value, 34
day_order

configuration value, 33
default_resolution_preset

configuration value, 37

F

file_size_format
configuration value, 37

filename_template
configuration value, 37

K

key
configuration value, 30

L

local_session_data_file_name
configuration value, 30

local_storage_path
configuration value, 30

F)

path_template
configuration value, 36

project_structure
configuration value, 38

R

resolution_presets
configuration value, 37

S

sequence_format
configuration value, 37
server_side_storage_path
configuration value, 30
status_bg_color
configuration value, 31
status_fg_color
configuration value, 31

T

task_duration
configuration value, 32
task_priority
configuration value, 32
task_schedule_constraints
configuration value, 34
task_schedule_models
configuration value, 34
thumbnail_ format
configuration value, 38
thumbnail quality

configuration value, 38
thumbnail_size
configuration value, 38
ticket_label
configuration value, 31
ticket_resolutions
configuration value, 31
ticket_status_order
configuration value, 31
ticket_workflow
configuration value, 31
timing_resolution
configuration value, 32
tj_command
configuration value, 36
tjp_department_template
configuration value, 35
tjp_main_template
configuration value, 36
tijp_project_template
configuration value, 35
tjp_studio_template
configuration value, 34
tjp_task_template
configuration value, 35
tjp_user_template
configuration value, 36
tjp_vacation_template
configuration value, 36

tjp_working_hours_template

configuration value, 34

Vv

version_take_name
configuration value, 31

W

weekly_ working_days
configuration value, 33

weekly_working_hours
configuration value, 33

working_hours
configuration value, 33

Y

yearly_working_days
configuration value, 33

78

Index

	About
	Features
	Installation
	Examples

	Installation
	How to Install Stalker
	Install Python
	Install Stalker
	Installing setuptools with ez_setup:
	Installing Stalker (All OSes):

	Checking the installation of Stalker
	For developers
	Installing a Database

	API Tutorial
	Introduction
	Part I - Basics
	Part II/A - Creating Simple Data
	Part II/B - Querying, Updating and Deleting Data
	Part III - Pipeline
	Part IV - Task & Resource Management
	Part V - Scheduling
	Part VI - Asset Management
	Part VII - Collaboration (not completed)
	Part VIII - Extending SOM (coming)
	Conclusion

	Design
	Introduction
	Concepts
	Stalker Object Model (SOM)

	Inheritance Diagram
	Features

	How To Customize Stalker
	How To Extend SOM
	Creating Data
	Creating a Project
	Create a Task

	Configuring Stalker
	config.py File
	Config Variables

	Upgrading Database
	Introduction
	Instructions

	How To Contribute
	Development Style
	Testing
	Coding Style
	SCM - Git
	Adding Changes

	Stalker Development Roadmap
	Roadmap Based on Versions
	0.1.0:
	0.2.0:
	0.3.0:

	Stalker Changes
	0.2.24
	0.2.23
	0.2.22
	0.2.21
	0.2.20
	0.2.19
	0.2.18
	0.2.17.6
	0.2.17.5
	0.2.17.4
	0.2.17.3
	0.2.17.2
	0.2.17.1
	0.2.17
	0.2.16.4
	0.2.16.3
	0.2.16.2
	0.2.16.1
	0.2.16
	0.2.15.2
	0.2.15.1
	0.2.15
	0.2.14
	0.2.13.3
	0.2.13.2
	0.2.13.1
	0.2.13
	0.2.12.1
	0.2.12
	0.2.11
	0.2.10.5
	0.2.10.4
	0.2.10.3
	0.2.10.2
	0.2.10.1
	0.2.10
	0.2.9.2
	0.2.9.1
	0.2.9
	0.2.8.4
	0.2.8.3
	0.2.8.2
	0.2.8.1.1
	0.2.8.1
	0.2.8
	0.2.7.6
	0.2.7.5
	0.2.7.4
	0.2.7.3
	0.2.7.2
	0.2.7.1
	0.2.7
	0.2.6.14
	0.2.6.13
	0.2.6.12
	0.2.6.11
	0.2.6.10
	0.2.6.9
	0.2.6.8
	0.2.6.7
	0.2.6.6
	0.2.6.5
	0.2.6.4
	0.2.6.3
	0.2.6.2
	0.2.6.1
	0.2.6
	0.2.5.5
	0.2.5.4
	0.2.5.3
	0.2.5.2
	0.2.5.1
	0.2.5
	0.2.4
	0.2.3.5
	0.2.3.4
	0.2.3.3
	0.2.3.2
	0.2.3.1
	0.2.3
	0.2.2.3
	0.2.2.2
	0.2.2.1
	0.2.2
	0.2.1.2
	0.2.1.1
	0.2.1
	0.2.0
	0.2.0.rc5
	0.2.0.rc4
	0.2.0.rc3
	0.2.0.rc2
	0.2.0.rc1
	0.2.0.b9
	0.2.0.b8
	0.2.0.b7
	0.2.0.b6
	0.2.0.b5
	0.2.0.b4
	0.2.0.b3
	0.2.0.b2
	0.2.0.b1
	0.2.0.a10
	0.2.0.a9
	0.2.0.a8
	0.2.0.a7
	0.2.0.a6
	0.2.0.a5
	0.2.0.a4
	0.2.0.a3
	0.2.0.a2
	0.2.0.a1

	Index

